Two-Parameter Logistic-Exponential Distribution: Some New Properties and Estimation Methods

Q3 Business, Management and Accounting
Sajid Ali, S. Dey, M. H. Tahir, M. Mansoor
{"title":"Two-Parameter Logistic-Exponential Distribution: Some New Properties and Estimation Methods","authors":"Sajid Ali, S. Dey, M. H. Tahir, M. Mansoor","doi":"10.1080/01966324.2020.1728453","DOIUrl":null,"url":null,"abstract":"Abstract The logistic exponential (LE) distribution is the only two parameter distribution that exhibits five hazard rate shapes such as constant, increasing, decreasing, bathtub, and upside-down bathtub. Due to its practical utility, this article considers ten frequentist methods of estimation, namely, maximum likelihood, least square, weighted least square, percentiles, maximum and minimum spacing distance, and variant of the method of the minimum distances for the LE parameters. A Monte Carlo simulation study is carried out to compare the performance of these estimation methods. Furthermore, Bayesian estimation under the squared error loss function assuming gamma priors for both parameters of the LE distribution is also discussed. The posterior summaries are obtained by using a Markov chain Monte Carlo algorithm. To show the practical superiority, a real-life data is analyzed to show that the LE model performs better than the well-known two-parameter models, like, exponentiated-exponential, Nadarajah–Haghighi, Birnbaum–Saunders, Weibull, Gamma, inverse Gaussian, and log-normal.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"270 - 298"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2020.1728453","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2020.1728453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract The logistic exponential (LE) distribution is the only two parameter distribution that exhibits five hazard rate shapes such as constant, increasing, decreasing, bathtub, and upside-down bathtub. Due to its practical utility, this article considers ten frequentist methods of estimation, namely, maximum likelihood, least square, weighted least square, percentiles, maximum and minimum spacing distance, and variant of the method of the minimum distances for the LE parameters. A Monte Carlo simulation study is carried out to compare the performance of these estimation methods. Furthermore, Bayesian estimation under the squared error loss function assuming gamma priors for both parameters of the LE distribution is also discussed. The posterior summaries are obtained by using a Markov chain Monte Carlo algorithm. To show the practical superiority, a real-life data is analyzed to show that the LE model performs better than the well-known two-parameter models, like, exponentiated-exponential, Nadarajah–Haghighi, Birnbaum–Saunders, Weibull, Gamma, inverse Gaussian, and log-normal.
双参数logistic -指数分布:一些新的性质和估计方法
摘要逻辑指数(LE)分布是唯一一个具有恒定、增加、减少、浴缸和倒置浴缸五种危险率形状的双参数分布。由于其实用性,本文考虑了十种常用的估计方法,即最大似然、最小二乘、加权最小二乘、百分位数、最大和最小间距,以及LE参数最小距离方法的变体。进行了蒙特卡罗模拟研究,以比较这些估计方法的性能。此外,还讨论了假设LE分布的两个参数都有伽玛先验的平方误差损失函数下的贝叶斯估计。使用马尔可夫链蒙特卡罗算法获得后验摘要。为了显示实际优势,对实际数据进行了分析,表明LE模型的性能优于众所周知的双参数模型,如指数型、Nadrajah–Hagheii、Birnbaum–Saunders、Weibull、Gamma、逆高斯和对数正态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信