{"title":"A hybrid classification method via keywords screening and attention mechanisms in extreme short text","authors":"Xinke Zhou, Yi Zhu, Yun Li, Jipeng Qiang, Yunhao Yuan, Xingdong Wu, Runmei Zhang","doi":"10.3233/ida-220417","DOIUrl":null,"url":null,"abstract":"Short text classification has provoked a vast amount of attention and research in recent decades. However, most existing methods only focus on the short texts that contain dozens of words like Twitter and Microblog, while pay far less attention to the extreme short texts like news headline and search snippets. Meanwhile, contemporary short text classification methods that extend the features via external knowledge sources always introduce lots of useless concepts, which may be detrimental to classification performance. Moreover, unlike traditional short text classification methods, the classification results of extreme short texts are often determined by a few even one or two keywords. To address these problems, we propose a novel hybrid classification method via Keywords Screening and Attention Mechanisms in extreme short text, called KSAM. More specifically, firstly, the attention-based BiLSTM is introduced in our method to enhance the role of keywords. Secondly, we screen the keywords in the extreme short text for obtaining the true class label, and the concepts concerning the keywords are retrieved from external open knowledge sources like DBpedia. Thirdly, the attention mechanisms are introduced to acquire the weight of these retrieved concepts. Finally, conceptual information is utilized to assist the classification of the extreme short text. Extensive experiments have demonstrated the effectiveness of our method compared to other state-of-the-art methods.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-220417","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Short text classification has provoked a vast amount of attention and research in recent decades. However, most existing methods only focus on the short texts that contain dozens of words like Twitter and Microblog, while pay far less attention to the extreme short texts like news headline and search snippets. Meanwhile, contemporary short text classification methods that extend the features via external knowledge sources always introduce lots of useless concepts, which may be detrimental to classification performance. Moreover, unlike traditional short text classification methods, the classification results of extreme short texts are often determined by a few even one or two keywords. To address these problems, we propose a novel hybrid classification method via Keywords Screening and Attention Mechanisms in extreme short text, called KSAM. More specifically, firstly, the attention-based BiLSTM is introduced in our method to enhance the role of keywords. Secondly, we screen the keywords in the extreme short text for obtaining the true class label, and the concepts concerning the keywords are retrieved from external open knowledge sources like DBpedia. Thirdly, the attention mechanisms are introduced to acquire the weight of these retrieved concepts. Finally, conceptual information is utilized to assist the classification of the extreme short text. Extensive experiments have demonstrated the effectiveness of our method compared to other state-of-the-art methods.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.