The bicyclic semigroup as the quotient inverse semigroup by any gauge inverse submonoid

Q3 Mathematics
E. Schwab
{"title":"The bicyclic semigroup as the quotient inverse semigroup by any gauge inverse submonoid","authors":"E. Schwab","doi":"10.13069/jacodesmath.1112177","DOIUrl":null,"url":null,"abstract":": Every gauge inverse submonoid (including Jones-Lawson’s gauge inverse submonoid of the polycyclic monoid P n ) is a normal submonoid. In 2018, Alyamani and Gilbert introduced an equivalence relation on an inverse semigroup associated to a normal inverse subsemigroup. The corresponding quotient set leads to an ordered groupoid. In this note we shall show that this ordered groupoid is inductive if the normal inverse subsemigroup is a gauge inverse submonoid and the corresponding quotient inverse semigroup by any guage inverse submonoid is isomorphic either to the bicyclic semigroup or to the bicyclic semigroup with adjoined zero.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.1112177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

: Every gauge inverse submonoid (including Jones-Lawson’s gauge inverse submonoid of the polycyclic monoid P n ) is a normal submonoid. In 2018, Alyamani and Gilbert introduced an equivalence relation on an inverse semigroup associated to a normal inverse subsemigroup. The corresponding quotient set leads to an ordered groupoid. In this note we shall show that this ordered groupoid is inductive if the normal inverse subsemigroup is a gauge inverse submonoid and the corresponding quotient inverse semigroup by any guage inverse submonoid is isomorphic either to the bicyclic semigroup or to the bicyclic semigroup with adjoined zero.
任意规范逆子单体作为商逆半群的双环半群
:每一个规范逆单阵(包括多环单阵pn的Jones-Lawson规范逆单阵)都是一个正规的单阵。2018年,Alyamani和Gilbert引入了与正逆子半群相关的逆半群上的等价关系。相应的商集导致一个有序群。本文将证明,如果正规逆子半群是规范逆子半群,并且任意规范逆子半群对应的商逆半群与双环半群或与伴零的双环半群同构,则该序群是归纳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信