Natural families in evolution algebras

IF 0.8 3区 数学 Q2 MATHEMATICS
N. Boudi, Yolanda Cabrera Casado, Mercedes Siles Molina
{"title":"Natural families in evolution algebras","authors":"N. Boudi, Yolanda Cabrera Casado, Mercedes Siles Molina","doi":"10.5565/publmat6612206","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator plus extending evolution subspaces having evolution rank one. This decomposition can be used to prove that in non-degenerate evolution algebras, any family of natural and orthogonal vectors can be extended to a natural basis. Central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis. \nWe also consider ideals in perfect evolution algebras and prove that they coincide with the basic ideals. \nNilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor. \nWe finish by considering the adjoint evolution algebra and relating its properties to the corresponding in the initial evolution algebra.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6612206","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator plus extending evolution subspaces having evolution rank one. This decomposition can be used to prove that in non-degenerate evolution algebras, any family of natural and orthogonal vectors can be extended to a natural basis. Central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis. We also consider ideals in perfect evolution algebras and prove that they coincide with the basic ideals. Nilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor. We finish by considering the adjoint evolution algebra and relating its properties to the corresponding in the initial evolution algebra.
进化代数中的自然族
本文引入了进化秩的概念,并将进化代数分解为其零化子加上进化秩为1的扩展进化子空间。这种分解可以用来证明在非退化演化代数中,任何自然和正交向量族都可以扩展到自然基。中心结果是那些正交线性无关向量族的特征,这些向量族可以扩展到自然基。我们还考虑了完美演化代数中的理想,并证明了它们与基本理想一致。三阶幂零元可以通过只看结构矩阵来局部化(在每个元素都是正方形的域上的完美进化代数中):任何消失的主辅都提供一个。相反,如果任意域上的完美演化代数具有三阶幂零元,则其结构矩阵具有消失的主辅。最后,我们考虑了伴随演化代数,并将其性质与初始演化代数中的相应性质联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page. Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信