Rational points on complete intersections over Fq(t)${\mathbb {F}}_q(t)$

IF 1.5 1区 数学 Q1 MATHEMATICS
P. Vishe
{"title":"Rational points on complete intersections over Fq(t)${\\mathbb {F}}_q(t)$","authors":"P. Vishe","doi":"10.1112/plms.12496","DOIUrl":null,"url":null,"abstract":"A 2‐dimensional version of Farey dissection for function fields K=Fq(t)$K=\\mathbb {F}_q(t)$ is developed and used to establish the quantitative arithmetic of the set of rational points on a smooth complete intersection of two quadrics X⊂PKn−1$X\\subset \\mathbb {P}^{n-1}_{K}$ , under the assumption that q$q$ is odd and n⩾9$n\\geqslant 9$ .","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12496","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A 2‐dimensional version of Farey dissection for function fields K=Fq(t)$K=\mathbb {F}_q(t)$ is developed and used to establish the quantitative arithmetic of the set of rational points on a smooth complete intersection of two quadrics X⊂PKn−1$X\subset \mathbb {P}^{n-1}_{K}$ , under the assumption that q$q$ is odd and n⩾9$n\geqslant 9$ .
Fq(t)${\mathbb{F}}_q(t$
函数域K=Fq(t)$K=\mathbb的Farey剖分的二维版本{F}_q(t) $被发展并用于建立两个二次曲面X⊂PKn−1$X\subet\mathbb{P}的光滑完全交上有理点集的定量算术^{n-1}_{K} $,假设q$q$是奇数并且n⩾9$n\geqslant 9$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信