On the existence of nonnegative radial solutions for Dirichlet exterior problems on the Heisenberg group

IF 2 3区 数学 Q1 MATHEMATICS
M. Jleli
{"title":"On the existence of nonnegative radial solutions for Dirichlet exterior problems on the Heisenberg group","authors":"M. Jleli","doi":"10.1515/dema-2022-0193","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the existence and nonexistence of nonnegative radial solutions to exterior problems of the form Δ H m u ( q ) + λ ψ ( q ) K ( r ( q ) ) f ( r 2 − Q ( q ) , u ( q ) ) = 0 {\\Delta }_{{{\\mathbb{H}}}^{m}}u\\left(q)+\\lambda \\psi \\left(q)K\\left(r\\left(q))f\\left({r}^{2-Q}\\left(q),u\\left(q))=0 in B 1 c {B}_{1}^{c} , under the Dirichlet boundary conditions u = 0 u=0 on ∂ B 1 \\partial {B}_{1} and lim r ( q ) → ∞ u ( q ) = 0 {\\mathrm{lim}}_{r\\left(q)\\to \\infty }u\\left(q)=0 . Here, λ ≥ 0 \\lambda \\ge 0 is a parameter, Δ H m {\\Delta }_{{{\\mathbb{H}}}^{m}} is the Kohn Laplacian on the Heisenberg group H m = R 2 m + 1 {{\\mathbb{H}}}^{m}={{\\mathbb{R}}}^{2m+1} , m > 1 m\\gt 1 , Q = 2 m + 2 Q=2m+2 , B 1 {B}_{1} is the unit ball in H m {{\\mathbb{H}}}^{m} , B 1 c {B}_{1}^{c} is the complement of B 1 {B}_{1} , and ψ ( q ) = ∣ z ∣ 2 r 2 ( q ) \\psi \\left(q)=\\frac{| z{| }^{2}}{{r}^{2}\\left(q)} . Namely, under certain conditions on K K and f f , we show that there exists a critical parameter λ ∗ ∈ ( 0 , ∞ ] {\\lambda }^{\\ast }\\in \\left(0,\\infty ] in the following sense. If 0 ≤ λ < λ ∗ 0\\le \\lambda \\lt {\\lambda }^{\\ast } , the above problem admits a unique nonnegative radial solution u λ {u}_{\\lambda } ; if λ ∗ < ∞ {\\lambda }^{\\ast }\\lt \\infty and λ ≥ λ ∗ \\lambda \\ge {\\lambda }^{\\ast } , the problem admits no nonnegative radial solution. When 0 ≤ λ < λ ∗ 0\\le \\lambda \\lt {\\lambda }^{\\ast } , a numerical algorithm that converges to u λ {u}_{\\lambda } is provided and the continuity of u λ {u}_{\\lambda } with respect to λ \\lambda , as well as the behavior of u λ {u}_{\\lambda } as λ → λ ∗ − \\lambda \\to {{\\lambda }^{\\ast }}^{-} , are studied. Moreover, sufficient conditions on the the behavior of f ( t , s ) f\\left(t,s) as s → ∞ s\\to \\infty are obtained, for which λ ∗ = ∞ {\\lambda }^{\\ast }=\\infty or λ ∗ < ∞ {\\lambda }^{\\ast }\\lt \\infty . Our approach is based on partial ordering methods and fixed point theory in cones.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We investigate the existence and nonexistence of nonnegative radial solutions to exterior problems of the form Δ H m u ( q ) + λ ψ ( q ) K ( r ( q ) ) f ( r 2 − Q ( q ) , u ( q ) ) = 0 {\Delta }_{{{\mathbb{H}}}^{m}}u\left(q)+\lambda \psi \left(q)K\left(r\left(q))f\left({r}^{2-Q}\left(q),u\left(q))=0 in B 1 c {B}_{1}^{c} , under the Dirichlet boundary conditions u = 0 u=0 on ∂ B 1 \partial {B}_{1} and lim r ( q ) → ∞ u ( q ) = 0 {\mathrm{lim}}_{r\left(q)\to \infty }u\left(q)=0 . Here, λ ≥ 0 \lambda \ge 0 is a parameter, Δ H m {\Delta }_{{{\mathbb{H}}}^{m}} is the Kohn Laplacian on the Heisenberg group H m = R 2 m + 1 {{\mathbb{H}}}^{m}={{\mathbb{R}}}^{2m+1} , m > 1 m\gt 1 , Q = 2 m + 2 Q=2m+2 , B 1 {B}_{1} is the unit ball in H m {{\mathbb{H}}}^{m} , B 1 c {B}_{1}^{c} is the complement of B 1 {B}_{1} , and ψ ( q ) = ∣ z ∣ 2 r 2 ( q ) \psi \left(q)=\frac{| z{| }^{2}}{{r}^{2}\left(q)} . Namely, under certain conditions on K K and f f , we show that there exists a critical parameter λ ∗ ∈ ( 0 , ∞ ] {\lambda }^{\ast }\in \left(0,\infty ] in the following sense. If 0 ≤ λ < λ ∗ 0\le \lambda \lt {\lambda }^{\ast } , the above problem admits a unique nonnegative radial solution u λ {u}_{\lambda } ; if λ ∗ < ∞ {\lambda }^{\ast }\lt \infty and λ ≥ λ ∗ \lambda \ge {\lambda }^{\ast } , the problem admits no nonnegative radial solution. When 0 ≤ λ < λ ∗ 0\le \lambda \lt {\lambda }^{\ast } , a numerical algorithm that converges to u λ {u}_{\lambda } is provided and the continuity of u λ {u}_{\lambda } with respect to λ \lambda , as well as the behavior of u λ {u}_{\lambda } as λ → λ ∗ − \lambda \to {{\lambda }^{\ast }}^{-} , are studied. Moreover, sufficient conditions on the the behavior of f ( t , s ) f\left(t,s) as s → ∞ s\to \infty are obtained, for which λ ∗ = ∞ {\lambda }^{\ast }=\infty or λ ∗ < ∞ {\lambda }^{\ast }\lt \infty . Our approach is based on partial ordering methods and fixed point theory in cones.
Heisenberg群上Dirichlet外问题非负径向解的存在性
摘要我们研究了B1c中ΔHmu(q)+λψ(q)K(r(q))f(r2−q(q),u(q)=0的外部问题的非负径向解的存在与不存在性{B}_{1} ^{c},在Dirichlet边界条件下,u=0 u=0,在{B}_{1} 和limr(q)→ ∞ u(q)=0{\mathrm{lim}}_{r\left(q)\to\infty}u \left(q)=0。这里,λ≥0\λ\ge 0是一个参数,ΔHm{\Delta}_{{\mathbb{H}}^{m}}是海森堡群上的Kohn拉普拉斯算子Hm=R2m+1{\math bb{H}^}m}={\mattbb{R}}^{2m+1},m>1 m\gt 1,Q=2m+2 Q=2m+2,B1{B}_{1} 是H m{\mathbb{H}}^{m},B 1 c中的单位球{B}_{1} ^{c}是B1的补码{B}_{1} ,和ψ(q)=ŞzŞ2 r2(q)\psi\left(q)=\frac{|z{|}^{2}}{r}^}\left。即,在K K和f f上的某些条件下,我们证明了在下列意义上存在一个临界参数λ*∈(0,∞){\lambda}^{\ast}\in\left(0,\infty]){u}_{\lambda};如果λ*<∞{\lambda}^{\last}\lt\infty且λ≥λ*\lambda \ge{\lang1033\lambda}^},则该问题不存在非负径向解。当0≤λ<λ*0\le\lambda\lt{\lambda}^{\sast}时,一个收敛于uλ的数值算法{u}_λ的连续性{u}_{\lambda}关于λλ的行为,以及uλ的行为{u}_{\lambda}为λ→ {\lang1033λ*−\lang1033λ\到{\llang1033λ}^{\ ast}}^}{-}。此外,f(t,s)f(t、s)为s的行为的充分条件→ ∞ 获得了λ*=∞{\lambda}^{\last}=infty或λ*<∞{\ lambda}^}\lt}infty。我们的方法基于锥中的偏序方法和不动点理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信