Cihua Zhou, Wei Xu, Yujie Liu, Zhichao Xue, Rui Chen, Ke Zhou, Jia Liu
{"title":"Numerosity representation in a deep convolutional neural network","authors":"Cihua Zhou, Wei Xu, Yujie Liu, Zhichao Xue, Rui Chen, Ke Zhou, Jia Liu","doi":"10.1177/18344909211012613","DOIUrl":null,"url":null,"abstract":"Enumerating objects in the environment (i.e., “number sense”) is crucial for survival in many animal species, and foundational for the construction of more abstract and complex mathematical knowledge in humans. Perhaps surprisingly, deep convolutional neural networks (DCNNs) spontaneously emerge a similar number sense even without any explicit training for numerosity estimation. However, little is known about how the number sense emerges, and the extent to which it is comparable with human number sense. Here, we examined whether the numerosity underestimation effect, a phenomenon indicating that numerosity perception acts upon the perceptual number rather than the physical number, can be observed in DCNNs. In a typical DCNN, AlexNet, we found that number-selective units at late layers operated on the perceptual number, like humans do. More importantly, this perceptual number sense did not emerge abruptly, rather developed progressively along the hierarchy in the DCNN, shifting from the physical number sense at early layers to perceptual number sense at late layers. Our finding hence provides important implications for the neural implementation of number sense in the human brain and advocates future research to determine whether the representation of numerosity also develops gradually along the human visual stream from physical number to perceptual number.","PeriodicalId":45049,"journal":{"name":"Journal of Pacific Rim Psychology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/18344909211012613","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pacific Rim Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/18344909211012613","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Enumerating objects in the environment (i.e., “number sense”) is crucial for survival in many animal species, and foundational for the construction of more abstract and complex mathematical knowledge in humans. Perhaps surprisingly, deep convolutional neural networks (DCNNs) spontaneously emerge a similar number sense even without any explicit training for numerosity estimation. However, little is known about how the number sense emerges, and the extent to which it is comparable with human number sense. Here, we examined whether the numerosity underestimation effect, a phenomenon indicating that numerosity perception acts upon the perceptual number rather than the physical number, can be observed in DCNNs. In a typical DCNN, AlexNet, we found that number-selective units at late layers operated on the perceptual number, like humans do. More importantly, this perceptual number sense did not emerge abruptly, rather developed progressively along the hierarchy in the DCNN, shifting from the physical number sense at early layers to perceptual number sense at late layers. Our finding hence provides important implications for the neural implementation of number sense in the human brain and advocates future research to determine whether the representation of numerosity also develops gradually along the human visual stream from physical number to perceptual number.