O. C. Nwufo, G. Nzebuka, B. Okonkwo, O. O. Okorafor, C. C. Onwuachu, C. Ononogbo, J. O. Igbokwe
{"title":"Watermelon (Citrullus vulgaris) seed oil as a potential feedstock for biodiesel production in Nigeria","authors":"O. C. Nwufo, G. Nzebuka, B. Okonkwo, O. O. Okorafor, C. C. Onwuachu, C. Ononogbo, J. O. Igbokwe","doi":"10.1080/17597269.2023.2167272","DOIUrl":null,"url":null,"abstract":"Abstract Biodiesel fuel was successfully synthesized from Nigerian Watermelon (Citrullus vulgaris) seed oil through direct base-catalysed transesterification process using Methanol and sodium hydroxide as alcohol and catalyst, respectively. The solvent extraction method was used to extract the watermelon oil from the seed in order to determine its physic-chemical properties for relevant uses. Physical properties of the watermelon seed oil, its biodiesel and biodiesel blends were measured using the American Society for Testing and Materials (ASTM) methods for biodiesel and diesel fuels. Also, the effect of temperature and catalyst concentration on the biodiesel yield was studied. The properties of the produced watermelon oil and its biodiesel fuel were compared with that of vegetable oils from other feedstock and their respective biodiesel fuels. The result showed that the calorific value of the produced watermelon biodiesel is 40.10 MJ/Kg while that of the watermelon seed oil is 38.24 MJ/Kg. The cetane number, kinematic viscosity at 40 °C and pour point of the produced oil are 39.38, 8.50 mm2/s and 15 °C while that of the produced biodiesel are 53.165, 5.82mm2/s and 3 °C for Watermelon biodiesel, respectively. The maximum biodiesel yield (93.68%) was recorded at 55 °C with catalyst concentration of 1.0% of sodium hydroxide (NaOH) by weight. In comparison to biodiesel produced from other feedstock, the lower heating value and cetane number of watermelon seed oil methyl ester (40.10 MJ/kg and 53.165) were higher than that of palm kernel biodiesel (39.30 MJ/kg and 52.30), castor biodiesel (30.50 MJ/kg and 50), sandbox seed biodiesel (37.00 MJ/kg and 50), dika nut biodiesel (39.00 MJ/kg and 52) and kapok fibre biodiesel (40.064 MJ/kg), while that of physic nut biodiesel were higher. The obtained properties of watermelon seed oil and its biodiesel conformed to the ASTM standards for biodiesel and diesel fuels. The results further showed that watermelon seed oil is a potential feedstock for biodiesel production and the biodiesel produced can serve as an alternative fuel for diesel engines.","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":"14 1","pages":"713 - 720"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2167272","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Biodiesel fuel was successfully synthesized from Nigerian Watermelon (Citrullus vulgaris) seed oil through direct base-catalysed transesterification process using Methanol and sodium hydroxide as alcohol and catalyst, respectively. The solvent extraction method was used to extract the watermelon oil from the seed in order to determine its physic-chemical properties for relevant uses. Physical properties of the watermelon seed oil, its biodiesel and biodiesel blends were measured using the American Society for Testing and Materials (ASTM) methods for biodiesel and diesel fuels. Also, the effect of temperature and catalyst concentration on the biodiesel yield was studied. The properties of the produced watermelon oil and its biodiesel fuel were compared with that of vegetable oils from other feedstock and their respective biodiesel fuels. The result showed that the calorific value of the produced watermelon biodiesel is 40.10 MJ/Kg while that of the watermelon seed oil is 38.24 MJ/Kg. The cetane number, kinematic viscosity at 40 °C and pour point of the produced oil are 39.38, 8.50 mm2/s and 15 °C while that of the produced biodiesel are 53.165, 5.82mm2/s and 3 °C for Watermelon biodiesel, respectively. The maximum biodiesel yield (93.68%) was recorded at 55 °C with catalyst concentration of 1.0% of sodium hydroxide (NaOH) by weight. In comparison to biodiesel produced from other feedstock, the lower heating value and cetane number of watermelon seed oil methyl ester (40.10 MJ/kg and 53.165) were higher than that of palm kernel biodiesel (39.30 MJ/kg and 52.30), castor biodiesel (30.50 MJ/kg and 50), sandbox seed biodiesel (37.00 MJ/kg and 50), dika nut biodiesel (39.00 MJ/kg and 52) and kapok fibre biodiesel (40.064 MJ/kg), while that of physic nut biodiesel were higher. The obtained properties of watermelon seed oil and its biodiesel conformed to the ASTM standards for biodiesel and diesel fuels. The results further showed that watermelon seed oil is a potential feedstock for biodiesel production and the biodiesel produced can serve as an alternative fuel for diesel engines.
Biofuels-UkEnergy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍:
Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy.
The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources.
As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation.
Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication.
As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.