On the Inverse Semigroup of Bimodules over a \(C^*\)-Algebra

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
V. M. Manuilov
{"title":"On the Inverse Semigroup of Bimodules over a \\(C^*\\)-Algebra","authors":"V. M. Manuilov","doi":"10.1134/S1061920822010071","DOIUrl":null,"url":null,"abstract":"<p> It was noticed recently that, given a metric space <span>\\((X,d_X)\\)</span>, the equivalence classes of metrics on the disjoint union of the two copies of <span>\\(X\\)</span> coinciding with <span>\\(d_X\\)</span> on each copy form an inverse semigroup <span>\\(M(X)\\)</span> with respect to concatenation of metrics. Now put this inverse semigroup construction in a more general context, namely, we define, for a <span>\\(C^*\\)</span>-algebra <span>\\(A\\)</span>, an inverse semigroup <span>\\(S(A)\\)</span> of Hilbert <span>\\(C^*\\)</span>-<span>\\(A\\)</span>-<span>\\(A\\)</span>-bimodules. When <span>\\(A\\)</span> is the uniform Roe algebra <span>\\(C^*_u(X)\\)</span> of a metric space <span>\\(X\\)</span>, we construct a mapping <span>\\(M(X)\\to S(C^*_u(X))\\)</span> and show that this mapping is injective, but not surjective in general. This allows to define an analog of the inverse semigroup <span>\\(M(X)\\)</span> that does not depend on the choice of a metric on <span>\\(X\\)</span> within its coarse equivalence class. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"29 1","pages":"76 - 80"},"PeriodicalIF":1.7000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920822010071","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It was noticed recently that, given a metric space \((X,d_X)\), the equivalence classes of metrics on the disjoint union of the two copies of \(X\) coinciding with \(d_X\) on each copy form an inverse semigroup \(M(X)\) with respect to concatenation of metrics. Now put this inverse semigroup construction in a more general context, namely, we define, for a \(C^*\)-algebra \(A\), an inverse semigroup \(S(A)\) of Hilbert \(C^*\)-\(A\)-\(A\)-bimodules. When \(A\) is the uniform Roe algebra \(C^*_u(X)\) of a metric space \(X\), we construct a mapping \(M(X)\to S(C^*_u(X))\) and show that this mapping is injective, but not surjective in general. This allows to define an analog of the inverse semigroup \(M(X)\) that does not depend on the choice of a metric on \(X\) within its coarse equivalence class.

关于\(C^*\) -代数上双模的逆半群
最近注意到,给定一个度量空间 \((X,d_X)\)的两个副本的不相交并上的度量的等价类 \(X\) 与…一致 \(d_X\) 在每个副本上形成一个逆半群 \(M(X)\) 关于度规的串联。现在把这个逆半群构造放到更一般的情况下,也就是说,我们定义,对于a \(C^*\)-代数 \(A\),一个逆半群 \(S(A)\) 希尔伯特 \(C^*\)-\(A\)-\(A\)-双模。什么时候 \(A\) 是统一的罗伊代数吗 \(C^*_u(X)\) 度量空间的 \(X\),我们构造一个映射 \(M(X)\to S(C^*_u(X))\) 证明这个映射是内射的,但不是一般的满射。这允许定义逆半群的类似物 \(M(X)\) 这并不取决于度规的选择 \(X\) 在它的粗等价类内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信