Topological loops with solvable multiplication groups of dimension at most six are centrally nilpotent

IF 0.7 Q2 MATHEMATICS
Á. Figula, A. Al-Abayechi
{"title":"Topological loops with solvable multiplication groups of dimension at most six are centrally nilpotent","authors":"Á. Figula, A. Al-Abayechi","doi":"10.22108/IJGT.2019.114770.1522","DOIUrl":null,"url":null,"abstract":"The main result of our consideration is the proof of the centrally nilpotency of class two property for connected topological proper loops $L$ of dimension $le 3$ which have an at most six-dimensional solvable indecomposable Lie group as their multiplication group. This theorem is obtained from our previous classification by the investigation of six-dimensional indecomposable solvable multiplication Lie groups having a five-dimensional nilradical. We determine the Lie algebras of these multiplication groups and the subalgebras of the corresponding inner mapping groups.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"9 1","pages":"81-94"},"PeriodicalIF":0.7000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2019.114770.1522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The main result of our consideration is the proof of the centrally nilpotency of class two property for connected topological proper loops $L$ of dimension $le 3$ which have an at most six-dimensional solvable indecomposable Lie group as their multiplication group. This theorem is obtained from our previous classification by the investigation of six-dimensional indecomposable solvable multiplication Lie groups having a five-dimensional nilradical. We determine the Lie algebras of these multiplication groups and the subalgebras of the corresponding inner mapping groups.
具有最多6维的可解乘法群的拓扑环是中心幂零的
我们考虑的主要结果是证明了维数为l3的连通拓扑固有环的第二类性质的中心幂零性,它们的乘法群最多有一个六维可解的不可分解李群。这一定理是由我们先前对具有五维零根的六维不可分解可解乘法李群的研究而得到的。我们确定了这些乘法群的李代数和相应的内映射群的子代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信