Concrete Subsurface Crack Detection Using Thermal Imaging in a Deep Neural Network

Mabrouka Abuhmida
{"title":"Concrete Subsurface Crack Detection Using Thermal Imaging in a Deep Neural Network","authors":"Mabrouka Abuhmida","doi":"10.22146/ijccs.82912","DOIUrl":null,"url":null,"abstract":"The article discusses how impact actions, such as conflict and warfare, can negatively impact the structural integrity of concrete structures and how detecting hidden defects in concrete structures is difficult without expert knowledge. The paper presents a new technique that combines thermal imaging and artificial intelligence to detect hidden defects in concrete structures. The authors trained an AI model on simulated data and achieved a validation accuracy of 99.93%. They then conducted a laboratory experiment to create a dataset of concrete blocks with and without subsurface cracks and trained a new model, which achieved a validation accuracy of 100%. The article concludes that AI can detect hidden defects and subsurface cracks in concrete structures by classifying thermal images of concrete surfaces.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.82912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article discusses how impact actions, such as conflict and warfare, can negatively impact the structural integrity of concrete structures and how detecting hidden defects in concrete structures is difficult without expert knowledge. The paper presents a new technique that combines thermal imaging and artificial intelligence to detect hidden defects in concrete structures. The authors trained an AI model on simulated data and achieved a validation accuracy of 99.93%. They then conducted a laboratory experiment to create a dataset of concrete blocks with and without subsurface cracks and trained a new model, which achieved a validation accuracy of 100%. The article concludes that AI can detect hidden defects and subsurface cracks in concrete structures by classifying thermal images of concrete surfaces.
基于深度神经网络的混凝土亚表面裂纹热成像检测
本文讨论了冲突和战争等冲击行为如何对混凝土结构的结构完整性产生负面影响,以及在没有专家知识的情况下检测混凝土结构中的隐藏缺陷是如何困难的。本文提出了一种将热成像和人工智能相结合的新技术来检测混凝土结构中的隐藏缺陷。作者在模拟数据上训练了一个人工智能模型,并实现了99.93%的验证准确率。然后,他们进行了一项实验室实验,创建了一个有和没有地下裂缝的混凝土块数据集,并训练了一种新的模型,实现了100%的验证准确度。文章得出结论,人工智能可以通过对混凝土表面的热图像进行分类来检测混凝土结构中的隐藏缺陷和亚表面裂纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信