{"title":"Detecting Suspected Epidemic Cases Using Trajectory Big Data","authors":"Chuansai Zhou, Wen Yuan, Jun Wang, Hai-feng Xu, Yong Jiang, Xinmin Wang, Q. Wen, Pingwen Zhang","doi":"10.4208/CSIAM-AM.2020-0006","DOIUrl":null,"url":null,"abstract":"Emerging infectious diseases are existential threats to human health and global stability. The recent outbreaks of the novel coronavirus COVID-19 have rapidly formed a global pandemic, causing hundreds of thousands of infections and huge economic loss. The WHO declares that more precise measures to track, detect and isolate infected people are among the most effective means to quickly contain the outbreak. Based on trajectory provided by the big data and the mean field theory, we establish an aggregated risk mean field that contains information of all risk-spreading particles by proposing a spatio-temporal model named HiRES risk map. It has dynamic fine spatial resolution and high computation efficiency enabling fast update. We then propose an objective individual epidemic risk scoring model named HiRES-p based on HiRES risk maps, and use it to develop statistical inference and machine learning methods for detecting suspected epidemic-infected individuals. We conduct numerical experiments by applying the proposed methods to study the early outbreak of COVID-19 in China. Results show that the HiRES risk map has strong ability in capturing global trend and local variability of the epidemic risk, thus can be applied to monitor epidemic risk at country, province, city and community levels, as well as at specific high-risk locations such as hospital and station. HiRES-p score seems to be an effective measurement of personal epidemic risk. The accuracy of both detecting methods are above 90\\% when the population infection rate is under 20\\%, which indicates great application potential in epidemic risk prevention and control practice.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/CSIAM-AM.2020-0006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15
Abstract
Emerging infectious diseases are existential threats to human health and global stability. The recent outbreaks of the novel coronavirus COVID-19 have rapidly formed a global pandemic, causing hundreds of thousands of infections and huge economic loss. The WHO declares that more precise measures to track, detect and isolate infected people are among the most effective means to quickly contain the outbreak. Based on trajectory provided by the big data and the mean field theory, we establish an aggregated risk mean field that contains information of all risk-spreading particles by proposing a spatio-temporal model named HiRES risk map. It has dynamic fine spatial resolution and high computation efficiency enabling fast update. We then propose an objective individual epidemic risk scoring model named HiRES-p based on HiRES risk maps, and use it to develop statistical inference and machine learning methods for detecting suspected epidemic-infected individuals. We conduct numerical experiments by applying the proposed methods to study the early outbreak of COVID-19 in China. Results show that the HiRES risk map has strong ability in capturing global trend and local variability of the epidemic risk, thus can be applied to monitor epidemic risk at country, province, city and community levels, as well as at specific high-risk locations such as hospital and station. HiRES-p score seems to be an effective measurement of personal epidemic risk. The accuracy of both detecting methods are above 90\% when the population infection rate is under 20\%, which indicates great application potential in epidemic risk prevention and control practice.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.