Analysis of Penrose’s Second Argument Formalised in DTK System

IF 0.6 Q2 LOGIC
A. Corradini, S. Galvan
{"title":"Analysis of Penrose’s Second Argument Formalised in DTK System","authors":"A. Corradini, S. Galvan","doi":"10.12775/llp.2021.019","DOIUrl":null,"url":null,"abstract":"This article aims to examine Koellner’s reconstruction of Penrose’s second argument – a reconstruction that uses the DTK system to deal with Gödel’s disjunction issues. Koellner states that Penrose’s argument is unsound, because it contains two illegitimate steps. He contends that the formulas to which the T-intro and K-intro rules apply are both indeterminate. However, we intend to show that we can correctly interpret the formulas on the set of arithmetic formulas, and that, as a consequence, the two steps become legitimate. Nevertheless, the argument remains partially inconclusive. More precisely, the argument does not reach a result that shows there is no formalism capable of deriving all the true arithmetic propositions known to man. Instead, it shows that, if such formalism exists, there is at least one true non-arithmetic proposition known to the human mind that we cannot derive from the formalism in question. Finally, we reflect on the idealised character of the DTK system. These reflections highlight the limits of human knowledge, and, at the same time, its irreducibility to computation.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2021.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to examine Koellner’s reconstruction of Penrose’s second argument – a reconstruction that uses the DTK system to deal with Gödel’s disjunction issues. Koellner states that Penrose’s argument is unsound, because it contains two illegitimate steps. He contends that the formulas to which the T-intro and K-intro rules apply are both indeterminate. However, we intend to show that we can correctly interpret the formulas on the set of arithmetic formulas, and that, as a consequence, the two steps become legitimate. Nevertheless, the argument remains partially inconclusive. More precisely, the argument does not reach a result that shows there is no formalism capable of deriving all the true arithmetic propositions known to man. Instead, it shows that, if such formalism exists, there is at least one true non-arithmetic proposition known to the human mind that we cannot derive from the formalism in question. Finally, we reflect on the idealised character of the DTK system. These reflections highlight the limits of human knowledge, and, at the same time, its irreducibility to computation.
对DTK系统形式化的Penrose第二论证的分析
本文旨在考察Koellner对Penrose第二论点的重构——利用DTK系统处理Gödel的析取问题的重构。Koellner说彭罗斯的论点是不合理的,因为它包含了两个不合理的步骤。他认为t -引入和k -引入规则适用的公式都是不确定的。然而,我们打算证明我们可以正确地解释算术公式集合上的公式,并且,作为结果,这两个步骤是合法的。然而,这一论点在一定程度上仍然没有定论。更确切地说,这个论证并没有得出一个结果,表明没有一种形式主义能够推导出人类所知道的所有真正的算术命题。相反,它表明,如果这样的形式主义存在,那么至少有一个人类心智所知道的真正的非算术命题,我们不能从所讨论的形式主义中推导出来。最后,对DTK系统的理想化特性进行了反思。这些反思突出了人类知识的局限性,同时也表明了它对计算的不可约性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信