COMBINED ALGORITHMS FOR CONSTRUCTING A SOLUTION TO THE TIME–OPTIMAL PROBLEM IN THREE-DIMENSIONAL SPACE BASED ON THE SELECTION OF EXTREME POINTS OF THE SCATTERING SURFACE
{"title":"COMBINED ALGORITHMS FOR CONSTRUCTING A SOLUTION TO THE TIME–OPTIMAL PROBLEM IN THREE-DIMENSIONAL SPACE BASED ON THE SELECTION OF EXTREME POINTS OF THE SCATTERING SURFACE","authors":"P. Lebedev, A. Uspenskii","doi":"10.15826/umj.2022.2.009","DOIUrl":null,"url":null,"abstract":"A class of time-optimal control problems in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve \\(\\Gamma\\) is chosen as the target set. We distinguish pseudo-vertices that are characteristic points on \\(\\Gamma\\) and responsible for the appearance of a singularity in the function of the optimal result. We reveal analytical relationships between pseudo-vertices and extreme points of a singular set belonging to the family of bisectors. The found analytical representation for the extreme points of the bisector is taken as the basis for numerical algorithms for constructing a singular set. The effectiveness of the developed approach for solving non-smooth dynamic problems is illustrated by an example of numerical-analytical construction of resolving structures for the time-optimal control problem.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.2.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
A class of time-optimal control problems in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve \(\Gamma\) is chosen as the target set. We distinguish pseudo-vertices that are characteristic points on \(\Gamma\) and responsible for the appearance of a singularity in the function of the optimal result. We reveal analytical relationships between pseudo-vertices and extreme points of a singular set belonging to the family of bisectors. The found analytical representation for the extreme points of the bisector is taken as the basis for numerical algorithms for constructing a singular set. The effectiveness of the developed approach for solving non-smooth dynamic problems is illustrated by an example of numerical-analytical construction of resolving structures for the time-optimal control problem.