The annihilator graph of modules over commutative rings

Q4 Mathematics
F. Saraei
{"title":"The annihilator graph of modules over commutative rings","authors":"F. Saraei","doi":"10.22124/JART.2021.18226.1241","DOIUrl":null,"url":null,"abstract":"Let $M$ be a module over a commutative ring $R$, $Z_{*}(M)$ be its set of weak zero-divisor elements, andif $min M$, then let $I_m=(Rm:_R M)={rin R : rMsubseteq Rm}$. The annihilator graph of $M$ is the (undirected) graph$AG(M)$ with vertices $tilde{Z_{*}}(M)=Z_{*}(M)setminus {0}$, and two distinct vertices $m$ and $n$ are adjacent if andonly if $(0:_R I_{m}I_{n}M)neq (0:_R m)cup (0:_R n)$. We show that $AG(M)$ is connected with diameter at most two and girth at mostfour. Also, we study some properties of the zero-divisor graph of reduced multiplication-like $R$-modules.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"93-108"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.18226.1241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $M$ be a module over a commutative ring $R$, $Z_{*}(M)$ be its set of weak zero-divisor elements, andif $min M$, then let $I_m=(Rm:_R M)={rin R : rMsubseteq Rm}$. The annihilator graph of $M$ is the (undirected) graph$AG(M)$ with vertices $tilde{Z_{*}}(M)=Z_{*}(M)setminus {0}$, and two distinct vertices $m$ and $n$ are adjacent if andonly if $(0:_R I_{m}I_{n}M)neq (0:_R m)cup (0:_R n)$. We show that $AG(M)$ is connected with diameter at most two and girth at mostfour. Also, we study some properties of the zero-divisor graph of reduced multiplication-like $R$-modules.
交换环上模的湮灭图
设$M$是交换环$R$上的一个模,$Z_{*}(M)$是交换环$R$上的弱零因子元素集,如果$min M$,则设$I_m=(Rm:_R M)={rin R: rMsubseteq Rm}$。$M$的湮灭子图是顶点$ tide {Z_{*}}(M)=Z_{*}(M) set-{0}$的(无向)图$AG(M)$,且两个不同的顶点$M$和$n$相邻当且仅当$(0:_R I_{M}I_{n}M)neq (0:_R M) cup (0:_R n)$。我们证明了$AG(M)$与直径最多为2,周长最多为4。此外,我们还研究了类R模的约简乘法的零因子图的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信