Experimental Study on Underwater Moving Gravity Measurement by Using Strapdown Gravimeter Based on AUV Platform

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Zhiqiang Zhang, Jiancheng Li, Kai-Jun Zhang, R. Yu
{"title":"Experimental Study on Underwater Moving Gravity Measurement by Using Strapdown Gravimeter Based on AUV Platform","authors":"Zhiqiang Zhang, Jiancheng Li, Kai-Jun Zhang, R. Yu","doi":"10.1080/01490419.2020.1861138","DOIUrl":null,"url":null,"abstract":"Abstract Autonomous underwater vehicle (AUV) can be controlled autonomously and cable-less, which can reduce the cost and has good applicability for underwater gravity measurement. Based on airborne gravity measurement, the basic principle of underwater moving gravity measurement is studied, and the mathematical model of AUV underwater moving gravity measurement is established, which based on the data obtained by the gravimeter with a fibre optic inertial navigation system (INS), short baseline underwater acoustic positioning (SBL), Doppler velocity log (DVL) and depth gauge (DG). Underwater experimental verification system of moving gravity measurement consists of the reformed BQR800 Unmanned Underwater Vehicle and dg-M strapdown gravimeter. Mulan Lake in Wuhan was selected as the experimental site. Experimental scheme and processing flow of underwater moving gravity measurement data was designed. Data obtained by strapdown gravimeter, DG, DVL, SBL and other equipment was analysed, and the data calculation was completed. Moreover, the repetition lines are selected to evaluate the repeatability of gravity measurement. The experiment al verification of gravity measurement for three return trips were carried out from January 7 to 8, 2020. The accuracy of repetition line reached 0.42 mGal, which verified the feasibility of underwater moving gravity measurement.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"108 - 135"},"PeriodicalIF":2.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2020.1861138","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2020.1861138","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Autonomous underwater vehicle (AUV) can be controlled autonomously and cable-less, which can reduce the cost and has good applicability for underwater gravity measurement. Based on airborne gravity measurement, the basic principle of underwater moving gravity measurement is studied, and the mathematical model of AUV underwater moving gravity measurement is established, which based on the data obtained by the gravimeter with a fibre optic inertial navigation system (INS), short baseline underwater acoustic positioning (SBL), Doppler velocity log (DVL) and depth gauge (DG). Underwater experimental verification system of moving gravity measurement consists of the reformed BQR800 Unmanned Underwater Vehicle and dg-M strapdown gravimeter. Mulan Lake in Wuhan was selected as the experimental site. Experimental scheme and processing flow of underwater moving gravity measurement data was designed. Data obtained by strapdown gravimeter, DG, DVL, SBL and other equipment was analysed, and the data calculation was completed. Moreover, the repetition lines are selected to evaluate the repeatability of gravity measurement. The experiment al verification of gravity measurement for three return trips were carried out from January 7 to 8, 2020. The accuracy of repetition line reached 0.42 mGal, which verified the feasibility of underwater moving gravity measurement.
基于AUV平台的捷联式重力仪水下运动重力测量实验研究
摘要自主式水下机器人(AUV)可以实现自主控制,无需电缆,降低了成本,在水下重力测量中具有良好的适用性。在航空重力测量的基础上,研究了水下移动重力测量的基本原理,建立了AUV水下移动重量测量的数学模型,多普勒速度测井(DVL)和深度计(DG)。移动重力测量水下实验验证系统由改造后的BQR800型无人潜水器和dg-M型捷联式重力仪组成。实验地点选择武汉木兰湖。设计了水下移动重力测量数据的实验方案和处理流程。对捷联式重力仪、DG、DVL、SBL等设备获得的数据进行了分析,并完成了数据计算。此外,选择重复线来评估重力测量的可重复性。2020年1月7日至8日进行了三次返程重力测量的实验验证。重复线的精度达到0.42mGal,验证了水下移动重力测量的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Geodesy
Marine Geodesy 地学-地球化学与地球物理
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment. The journal will consider articles on the following topics: topography and mapping; satellite altimetry; bathymetry; positioning; precise navigation; boundary demarcation and determination; tsunamis; plate/tectonics; geoid determination; hydrographic and oceanographic observations; acoustics and space instrumentation; ground truth; system calibration and validation; geographic information systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信