Dilawar Ali, Kenzo Milleville, S. Verstockt, N. van de Weghe, Sally Chambers, Julie M. Birkholz
{"title":"Computer vision and machine learning approaches for metadata enrichment to improve searchability of historical newspaper collections","authors":"Dilawar Ali, Kenzo Milleville, S. Verstockt, N. van de Weghe, Sally Chambers, Julie M. Birkholz","doi":"10.1108/jd-01-2022-0029","DOIUrl":null,"url":null,"abstract":"PurposeHistorical newspaper collections provide a wealth of information about the past. Although the digitization of these collections significantly improves their accessibility, a large portion of digitized historical newspaper collections, such as those of KBR, the Royal Library of Belgium, are not yet searchable at article-level. However, recent developments in AI-based research methods, such as document layout analysis, have the potential for further enriching the metadata to improve the searchability of these historical newspaper collections. This paper aims to discuss the aforementioned issue.Design/methodology/approachIn this paper, the authors explore how existing computer vision and machine learning approaches can be used to improve access to digitized historical newspapers. To do this, the authors propose a workflow, using computer vision and machine learning approaches to (1) provide article-level access to digitized historical newspaper collections using document layout analysis, (2) extract specific types of articles (e.g. feuilletons – literary supplements from Le Peuple from 1938), (3) conduct image similarity analysis using (un)supervised classification methods and (4) perform named entity recognition (NER) to link the extracted information to open data.FindingsThe results show that the proposed workflow improves the accessibility and searchability of digitized historical newspapers, and also contributes to the building of corpora for digital humanities research. The AI-based methods enable automatic extraction of feuilletons, clustering of similar images and dynamic linking of related articles.Originality/valueThe proposed workflow enables automatic extraction of articles, including detection of a specific type of article, such as a feuilleton or literary supplement. This is particularly valuable for humanities researchers as it improves the searchability of these collections and enables corpora to be built around specific themes. Article-level access to, and improved searchability of, KBR's digitized newspapers are demonstrated through the online tool (https://tw06v072.ugent.be/kbr/).","PeriodicalId":47969,"journal":{"name":"Journal of Documentation","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Documentation","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/jd-01-2022-0029","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeHistorical newspaper collections provide a wealth of information about the past. Although the digitization of these collections significantly improves their accessibility, a large portion of digitized historical newspaper collections, such as those of KBR, the Royal Library of Belgium, are not yet searchable at article-level. However, recent developments in AI-based research methods, such as document layout analysis, have the potential for further enriching the metadata to improve the searchability of these historical newspaper collections. This paper aims to discuss the aforementioned issue.Design/methodology/approachIn this paper, the authors explore how existing computer vision and machine learning approaches can be used to improve access to digitized historical newspapers. To do this, the authors propose a workflow, using computer vision and machine learning approaches to (1) provide article-level access to digitized historical newspaper collections using document layout analysis, (2) extract specific types of articles (e.g. feuilletons – literary supplements from Le Peuple from 1938), (3) conduct image similarity analysis using (un)supervised classification methods and (4) perform named entity recognition (NER) to link the extracted information to open data.FindingsThe results show that the proposed workflow improves the accessibility and searchability of digitized historical newspapers, and also contributes to the building of corpora for digital humanities research. The AI-based methods enable automatic extraction of feuilletons, clustering of similar images and dynamic linking of related articles.Originality/valueThe proposed workflow enables automatic extraction of articles, including detection of a specific type of article, such as a feuilleton or literary supplement. This is particularly valuable for humanities researchers as it improves the searchability of these collections and enables corpora to be built around specific themes. Article-level access to, and improved searchability of, KBR's digitized newspapers are demonstrated through the online tool (https://tw06v072.ugent.be/kbr/).
期刊介绍:
The scope of the Journal of Documentation is broadly information sciences, encompassing all of the academic and professional disciplines which deal with recorded information. These include, but are certainly not limited to: ■Information science, librarianship and related disciplines ■Information and knowledge management ■Information and knowledge organisation ■Information seeking and retrieval, and human information behaviour ■Information and digital literacies