H. Bezzout, E. H. El Ouardy, N. Meskini, H. El Faylali
{"title":"A Two-Dimensional Unsteady FDTD Model for Radon Transport with Multiple Sources Emanation from Soil Layers","authors":"H. Bezzout, E. H. El Ouardy, N. Meskini, H. El Faylali","doi":"10.55981/aij.2023.1230","DOIUrl":null,"url":null,"abstract":"A two-dimensional numerical model for radon transport based on the finite difference time domain (FDTD) method have been developed. The model is governed by the radon transport equation taking into account the mechanisms of diffusion, advection, and decay. The purpose of this model is to simulate the evolution of radon concentration which can be influenced by various parameters including depth and diffusion coefficient of the soil layer plus the velocity and initial concentration of radon. The obtained results were compared to an analytical solution to demonstrate the ability of this model for predicting the spatio-temporal evolution of radon transport in the porous media of soil layers.","PeriodicalId":8647,"journal":{"name":"Atom Indonesia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atom Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55981/aij.2023.1230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A two-dimensional numerical model for radon transport based on the finite difference time domain (FDTD) method have been developed. The model is governed by the radon transport equation taking into account the mechanisms of diffusion, advection, and decay. The purpose of this model is to simulate the evolution of radon concentration which can be influenced by various parameters including depth and diffusion coefficient of the soil layer plus the velocity and initial concentration of radon. The obtained results were compared to an analytical solution to demonstrate the ability of this model for predicting the spatio-temporal evolution of radon transport in the porous media of soil layers.
期刊介绍:
The focus of Atom Indonesia is research and development in nuclear science and technology. The scope of this journal covers experimental and analytical research in nuclear science and technology. The topics include nuclear physics, reactor physics, radioactive waste, fuel element, radioisotopes, radiopharmacy, radiation, and neutron scattering, as well as their utilization in agriculture, industry, health, environment, energy, material science and technology, and related fields.