Clamping force of a multilayered cylindrical clamper with internal friction

IF 3.2 3区 工程技术 Q2 MECHANICS
Bo-Hua Sun , Xiao-Lin Guo
{"title":"Clamping force of a multilayered cylindrical clamper with internal friction","authors":"Bo-Hua Sun ,&nbsp;Xiao-Lin Guo","doi":"10.1016/j.taml.2022.100355","DOIUrl":null,"url":null,"abstract":"<div><p>Holding an object by clamping force is a fundamental phenomena. Layered or laminated architectures with internal sliding features are essential mechanism in natural and man-made structural system. In this paper, we combine the layered architecture and clamping mechanism to form a multilayered clamper and study the clamping force with internal friction. Our investigations show that the clamping force and energy dissipation are very much depend on the number of layers, its geometry and elasticity, as well as internal friction. The central goal of studying the multilayered clamp is not only to predict the clamping force, but also as a representative case to help finding some clue on the universal behaviours of multilayered architectures with internal friction.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 5","pages":"Article 100355"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000356/pdfft?md5=8a53c2afaa4f2d1f2b9cb5f011e0ac1b&pid=1-s2.0-S2095034922000356-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000356","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

Holding an object by clamping force is a fundamental phenomena. Layered or laminated architectures with internal sliding features are essential mechanism in natural and man-made structural system. In this paper, we combine the layered architecture and clamping mechanism to form a multilayered clamper and study the clamping force with internal friction. Our investigations show that the clamping force and energy dissipation are very much depend on the number of layers, its geometry and elasticity, as well as internal friction. The central goal of studying the multilayered clamp is not only to predict the clamping force, but also as a representative case to help finding some clue on the universal behaviours of multilayered architectures with internal friction.

带内摩擦的多层圆柱形夹钳夹紧力
用夹紧力夹住物体是一种基本现象。具有内部滑动特征的层状或叠层结构是自然和人工结构体系的基本机制。本文将分层结构与夹紧机构相结合,形成多层夹紧机构,并研究了夹紧力与内摩擦的关系。我们的研究表明,夹紧力和能量耗散在很大程度上取决于层数,其几何形状和弹性,以及内摩擦。研究多层夹具的中心目标不仅是预测夹紧力,而且是作为一个代表性的案例,帮助我们找到一些线索,了解多层结构的普遍行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信