Refined Littlewood identity for spin Hall–Littlewood symmetric rational functions

Q3 Mathematics
S. Gavrilova
{"title":"Refined Littlewood identity for spin Hall–Littlewood symmetric rational functions","authors":"S. Gavrilova","doi":"10.5802/alco.251","DOIUrl":null,"url":null,"abstract":"Fully inhomogeneous spin Hall-Littlewood symmetric rational functions $F_\\lambda$ are multiparameter deformations of the classical Hall-Littlewood symmetric polynomials and can be viewed as partition functions in $\\mathfrak{sl}(2)$ higher spin six vertex models. We obtain a refined Littlewood identity expressing a weighted sum of $F_\\lambda$'s over all partitions $\\lambda$ with even multiplicities as a certain Pfaffian. This Pfaffian can be derived as a partition function of the six vertex model in a triangle with suitably decorated domain wall boundary conditions. The proof is based on the Yang-Baxter equation.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Fully inhomogeneous spin Hall-Littlewood symmetric rational functions $F_\lambda$ are multiparameter deformations of the classical Hall-Littlewood symmetric polynomials and can be viewed as partition functions in $\mathfrak{sl}(2)$ higher spin six vertex models. We obtain a refined Littlewood identity expressing a weighted sum of $F_\lambda$'s over all partitions $\lambda$ with even multiplicities as a certain Pfaffian. This Pfaffian can be derived as a partition function of the six vertex model in a triangle with suitably decorated domain wall boundary conditions. The proof is based on the Yang-Baxter equation.
自旋Hall-Littlewood对称有理函数的改进Littlewood恒等式
完全非齐次自旋Hall-Littlewood对称有理函数$F_\lambda$是经典Hall-Littlewood对称多项式的多参数变形,可以看作$\mathfrak{sl}(2)$高自旋六顶点模型中的配分函数。我们得到了一个精细的Littlewood恒等式,表示所有分区$\lambda$上的$F_\lambda$的加权和,其多重性为偶。在适当修饰的域壁边界条件下,可以导出该函数为三角形六顶点模型的配分函数。证明是基于杨-巴克斯特方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信