{"title":"A Computational Magnetohydrodynamic Modelling Study on Plasma Arc Behaviour in Gasification Applications","authors":"Q. Reynolds, T. P. Kekana, B. Xakalashe","doi":"10.3390/mca28020060","DOIUrl":null,"url":null,"abstract":"The application of direct-current plasma arc furnace technology to the problem of coal gasification is investigated using computational multiphysics models of the plasma arc inside such units. An integrated modelling workflow for the study of DC plasma arc discharges in synthesis gas atmospheres is presented. The thermodynamic and transport properties of the plasma are estimated using statistical mechanics calculations and are shown to have highly non-linear dependencies on the gas composition and temperature. A computational magnetohydrodynamic solver for electromagnetically coupled flows is developed and implemented in the OpenFOAM® framework, and the behaviour of three-dimensional transient simulations of arc formation and dynamics is studied in response to different plasma gas compositions and furnace operating conditions. To demonstrate the utility of the methods presented, practical engineering results are obtained from an ensemble of simulation results for a pilot-scale furnace design. These include the stability of the arc under different operating conditions and the dependence of voltage–current relationships on the arc length, which are relevant in understanding the industrial operability of plasma arc furnaces used for waste coal gasification.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The application of direct-current plasma arc furnace technology to the problem of coal gasification is investigated using computational multiphysics models of the plasma arc inside such units. An integrated modelling workflow for the study of DC plasma arc discharges in synthesis gas atmospheres is presented. The thermodynamic and transport properties of the plasma are estimated using statistical mechanics calculations and are shown to have highly non-linear dependencies on the gas composition and temperature. A computational magnetohydrodynamic solver for electromagnetically coupled flows is developed and implemented in the OpenFOAM® framework, and the behaviour of three-dimensional transient simulations of arc formation and dynamics is studied in response to different plasma gas compositions and furnace operating conditions. To demonstrate the utility of the methods presented, practical engineering results are obtained from an ensemble of simulation results for a pilot-scale furnace design. These include the stability of the arc under different operating conditions and the dependence of voltage–current relationships on the arc length, which are relevant in understanding the industrial operability of plasma arc furnaces used for waste coal gasification.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.