Solving the Problem of Constraints Due to Dirichlet Boundary Conditions in the Context of the Mini Element Method

Q3 Engineering
O. Koubaiti, A. Elkhalfi, J. EL-Mekkaoui, N. Mastorakis
{"title":"Solving the Problem of Constraints Due to Dirichlet Boundary Conditions in the Context of the Mini Element Method","authors":"O. Koubaiti, A. Elkhalfi, J. EL-Mekkaoui, N. Mastorakis","doi":"10.46300/9104.2020.14.2","DOIUrl":null,"url":null,"abstract":"In this work, we propose a new boundary condition called CA;B to remedy the problems of constraints due to the Dirichlet boundary conditions. We consider the 2D-linear elasticity equation of Navier-Lam´e with the condition CA;B. The latter allows to have a total insertion of the essential boundary condition in the linear system obtained without going through a numerical method like the lagrange multiplier method, this resulted in a non-extended linear system easy to reverse. We have developed the mixed finite element method using the mini element space (P1 + bubble, P1). Finally we have shown the efficiency and the feasibility of the limited condition CA;B.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9104.2020.14.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 12

Abstract

In this work, we propose a new boundary condition called CA;B to remedy the problems of constraints due to the Dirichlet boundary conditions. We consider the 2D-linear elasticity equation of Navier-Lam´e with the condition CA;B. The latter allows to have a total insertion of the essential boundary condition in the linear system obtained without going through a numerical method like the lagrange multiplier method, this resulted in a non-extended linear system easy to reverse. We have developed the mixed finite element method using the mini element space (P1 + bubble, P1). Finally we have shown the efficiency and the feasibility of the limited condition CA;B.
小单元法中Dirichlet边界条件约束问题的求解
在这项工作中,我们提出了一个新的边界条件,称为CA;B,以弥补由于Dirichlet边界条件的约束问题。考虑具有CA;B条件的二维线性Navier-Lam弹性方程。后者允许在线性系统中完全插入必要的边界条件,而无需通过像拉格朗日乘子法这样的数值方法,从而产生易于逆转的非扩展线性系统。我们开发了使用小单元空间(P1 +气泡,P1)的混合有限元方法。最后,我们证明了有限条件CA和B的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanics
International Journal of Mechanics Engineering-Computational Mechanics
CiteScore
1.60
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信