Representations and modules of Rota–Baxter algebras

IF 0.5 4区 数学 Q3 MATHEMATICS
Li Guo, Zongzhu Lin
{"title":"Representations and modules of Rota–Baxter algebras","authors":"Li Guo, Zongzhu Lin","doi":"10.4310/ajm.2021.v25.n6.a3","DOIUrl":null,"url":null,"abstract":"We give a broad study of representation and module theory of Rota-Baxter algebras. Regular-singular decompositions of Rota-Baxter algebras and Rota-Baxter modules are obtained under the condition of quasi-idempotency. Representations of an Rota-Baxter algebra are shown to be equivalent to the representations of the ring of Rota-Baxter operators whose categorical properties are obtained and explicit constructions are provided. Representations from coalgebras are investigated and their algebraic Birkhoff factorization is given. Representations of Rota-Baxter algebras in the tensor category context is also formulated.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n6.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

We give a broad study of representation and module theory of Rota-Baxter algebras. Regular-singular decompositions of Rota-Baxter algebras and Rota-Baxter modules are obtained under the condition of quasi-idempotency. Representations of an Rota-Baxter algebra are shown to be equivalent to the representations of the ring of Rota-Baxter operators whose categorical properties are obtained and explicit constructions are provided. Representations from coalgebras are investigated and their algebraic Birkhoff factorization is given. Representations of Rota-Baxter algebras in the tensor category context is also formulated.
Rota-Baxter代数的表示与模
本文对Rota-Baxter代数的表示和模理论进行了广泛的研究。在拟等幂条件下,得到了Rota-Baxter代数和Rota-Baxter模的正则-奇异分解。证明了Rota-Baxter代数的表示等价于Rota-Baxter算子环的表示,得到了Rota-Baxter算子的范畴性质并给出了其显式构造。研究了余代数的表示,给出了代数Birkhoff分解。在张量范畴上下文中也给出了Rota-Baxter代数的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信