Eye Tracking-Based Stress Classification of Athletes in Virtual Reality

IF 1.4 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Maike P. Stoeve, M. Wirth, Rosanna Farlock, André Antunovic, Victoria Müller, Bjoern M. Eskofier
{"title":"Eye Tracking-Based Stress Classification of Athletes in Virtual Reality","authors":"Maike P. Stoeve, M. Wirth, Rosanna Farlock, André Antunovic, Victoria Müller, Bjoern M. Eskofier","doi":"10.1145/3530796","DOIUrl":null,"url":null,"abstract":"Monitoring stress is relevant in many areas, including sports science. In that scope, various studies showed the feasibility of stress classification using eye tracking data. In most cases, the screen-based experimental design restricted the motion of participants. Consequently, the transferability of results to dynamic sports applications remains unclear. To address this research gap, we conducted a virtual reality-based stress test consisting of a football goalkeeping scenario. We contribute by proposing a stress classification pipeline solely relying on gaze behaviour and pupil diameter metrics extracted from the recorded data. To optimize the analysis pipeline, we applied feature selection and compared the performance of different classification methods. Results show that the Random Forest classifier achieves the best performance with 87.3% accuracy, comparable to state-of-the-art approaches fusing eye tracking data and additional biosignals. Moreover, our approach outperforms existing methods exclusively relying on eye measures.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 17"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3530796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 6

Abstract

Monitoring stress is relevant in many areas, including sports science. In that scope, various studies showed the feasibility of stress classification using eye tracking data. In most cases, the screen-based experimental design restricted the motion of participants. Consequently, the transferability of results to dynamic sports applications remains unclear. To address this research gap, we conducted a virtual reality-based stress test consisting of a football goalkeeping scenario. We contribute by proposing a stress classification pipeline solely relying on gaze behaviour and pupil diameter metrics extracted from the recorded data. To optimize the analysis pipeline, we applied feature selection and compared the performance of different classification methods. Results show that the Random Forest classifier achieves the best performance with 87.3% accuracy, comparable to state-of-the-art approaches fusing eye tracking data and additional biosignals. Moreover, our approach outperforms existing methods exclusively relying on eye measures.
虚拟现实中基于眼动追踪的运动员压力分类
监测压力在许多领域都是相关的,包括体育科学。在这个范围内,各种研究表明了使用眼动追踪数据进行压力分类的可行性。在大多数情况下,基于屏幕的实验设计限制了参与者的运动。因此,结果的可转移性动态运动应用程序仍然不清楚。为了解决这一研究缺口,我们进行了一个基于虚拟现实的压力测试,该测试由一个足球守门员场景组成。我们提出了一种压力分类管道,仅依赖于从记录数据中提取的凝视行为和瞳孔直径指标。为了优化分析管道,我们应用了特征选择,并比较了不同分类方法的性能。结果表明,随机森林分类器达到了87.3%的准确率,与最先进的融合眼动追踪数据和其他生物信号的方法相当。此外,我们的方法优于仅依靠眼睛测量的现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信