{"title":"Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity","authors":"M. B. Benboubker, Hayat Benkhalou, H. Hjiaj","doi":"10.5269/bspm.62362","DOIUrl":null,"url":null,"abstract":"In this work, we study the following quasilinear Neumann boundary-value problem$$\\left\\{\\begin{array}{ll}\\displaystyle -\\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\\nabla u))+|u|^{p_{0}-2} u= f(x,u,\\nabla u) & \\mbox{in } \\ \\quad \\Omega,\\\\\\displaystyle \\sum^{N}_{i=1} a_{i}(x,u,\\nabla u)\\cdot n_{i} = g(x) & \\mbox{on } \\ \\quad \\partial\\Omega,\\end{array}\\right.$$where $\\Omega$ is a bounded open domain in $\\>I\\!\\!R^{N}$, $(N\\geq 2)$. We prove the existence of a weak solution for $f \\in L^{\\infty}(\\Omega)$ and $g\\in L^{\\infty}(\\partial\\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we study the following quasilinear Neumann boundary-value problem$$\left\{\begin{array}{ll}\displaystyle -\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\nabla u))+|u|^{p_{0}-2} u= f(x,u,\nabla u) & \mbox{in } \ \quad \Omega,\\\displaystyle \sum^{N}_{i=1} a_{i}(x,u,\nabla u)\cdot n_{i} = g(x) & \mbox{on } \ \quad \partial\Omega,\end{array}\right.$$where $\Omega$ is a bounded open domain in $\>I\!\!R^{N}$, $(N\geq 2)$. We prove the existence of a weak solution for $f \in L^{\infty}(\Omega)$ and $g\in L^{\infty}(\partial\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.