Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity

IF 0.4 Q4 MATHEMATICS
M. B. Benboubker, Hayat Benkhalou, H. Hjiaj
{"title":"Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity","authors":"M. B. Benboubker, Hayat Benkhalou, H. Hjiaj","doi":"10.5269/bspm.62362","DOIUrl":null,"url":null,"abstract":"In this work, we study the following quasilinear Neumann boundary-value problem$$\\left\\{\\begin{array}{ll}\\displaystyle -\\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\\nabla u))+|u|^{p_{0}-2} u= f(x,u,\\nabla u) & \\mbox{in } \\ \\quad \\Omega,\\\\\\displaystyle \\sum^{N}_{i=1} a_{i}(x,u,\\nabla u)\\cdot n_{i} = g(x) & \\mbox{on } \\ \\quad \\partial\\Omega,\\end{array}\\right.$$where $\\Omega$ is a bounded open domain in $\\>I\\!\\!R^{N}$, $(N\\geq 2)$. We prove the existence of a weak solution for $f \\in L^{\\infty}(\\Omega)$ and $g\\in L^{\\infty}(\\partial\\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.62362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the following quasilinear Neumann boundary-value problem$$\left\{\begin{array}{ll}\displaystyle -\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\nabla u))+|u|^{p_{0}-2} u= f(x,u,\nabla u) & \mbox{in } \ \quad \Omega,\\\displaystyle \sum^{N}_{i=1} a_{i}(x,u,\nabla u)\cdot n_{i} = g(x) & \mbox{on } \ \quad \partial\Omega,\end{array}\right.$$where $\Omega$ is a bounded open domain in $\>I\!\!R^{N}$, $(N\geq 2)$. We prove the existence of a weak solution for $f \in L^{\infty}(\Omega)$ and $g\in L^{\infty}(\partial\Omega)$ and the existence of renormalized solutions for $L^{1}$-data $f$ and $g$. The functional setting involves anisotropic Sobolev spaces with constants exponents.
退化矫顽力各向异性Neumann问题的弱解和重整化解
在这项工作中,我们研究以下拟线性Neumann边值问题$$\left\{\begin{array}{ll}\displaystyle -\sum^{N}_{i=1} D^{i}(a_{i}(x,u,\nabla u))+|u|^{p_{0}-2} u= f(x,u,\nabla u) & \mbox{in } \ \quad \Omega,\\\displaystyle \sum^{N}_{i=1} a_{i}(x,u,\nabla u)\cdot n_{i} = g(x) & \mbox{on } \ \quad \partial\Omega,\end{array}\right.$$,其中$\Omega$是$\>I\!\!R^{N}$, $(N\geq 2)$中的有界开域。我们证明了$f \in L^{\infty}(\Omega)$和$g\in L^{\infty}(\partial\Omega)$的弱解的存在性,以及$L^{1}$ -data $f$和$g$的重整解的存在性。函数设置涉及具有常数指数的各向异性Sobolev空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信