Dawid Wisniewski, Jedrzej Potoniec, A. Ławrynowicz
{"title":"ReqTagger: A Rule-Based Tagger for Automatic Glossary of Terms Extraction from Ontology Requirements","authors":"Dawid Wisniewski, Jedrzej Potoniec, A. Ławrynowicz","doi":"10.2478/fcds-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract Glossary of Terms extraction from textual requirements is an important step in ontology engineering methodologies. Although initially it was intended to be performed manually, last years have shown that some degree of automatization is possible. Based on these promising approaches, we introduce a novel, human interpretable, rule-based method named ReqTagger, which can extract candidates for ontology entities (classes or instances) and relations (data or object properties) from textual requirements automatically. We compare ReqTagger to existing automatic methods on an evaluation benchmark consisting of over 550 requirements and tagged with over 1700 entities and relations expected to be extracted. We discuss the quality of ReqTagger and provide details showing why it outperforms other methods. We also publish both the evaluation dataset and the implementation of ReqTagger.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"47 1","pages":"65 - 86"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Glossary of Terms extraction from textual requirements is an important step in ontology engineering methodologies. Although initially it was intended to be performed manually, last years have shown that some degree of automatization is possible. Based on these promising approaches, we introduce a novel, human interpretable, rule-based method named ReqTagger, which can extract candidates for ontology entities (classes or instances) and relations (data or object properties) from textual requirements automatically. We compare ReqTagger to existing automatic methods on an evaluation benchmark consisting of over 550 requirements and tagged with over 1700 entities and relations expected to be extracted. We discuss the quality of ReqTagger and provide details showing why it outperforms other methods. We also publish both the evaluation dataset and the implementation of ReqTagger.