On the Cyclicity of Dilated Systems in Lattices: Multiplicative Sequences, Polynomials, Dirichlet-type Spaces and Algebras

Q3 Mathematics
N. Nikolski
{"title":"On the Cyclicity of Dilated Systems in Lattices: Multiplicative Sequences, Polynomials, Dirichlet-type Spaces and Algebras","authors":"N. Nikolski","doi":"10.2478/mjpaa-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract The aim of these notes is to discuss the completeness of the dilated systems in a most general framework of an arbitrary sequence lattice X, including weighted ℓp spaces. In particular, general multiplicative and completely multiplicative sequences are treated. After the Fourier–Bohr transformation, we deal with the cyclicity property in function spaces on the corresponding infinite dimensional Reinhardt domain 𝔻X∞ \\mathbb{D}_X^\\infty . Functions with (weakly) dominating free term and (in particular) linearly factorable functions are considered. The most attention is paid to the cases of the polydiscs 𝔻X∞,|ℂN=𝔻N \\mathbb{D}_X^\\infty ,|{\\mathbb{C}^N} = {\\mathbb{D}^N} and the ℓp-unit balls 𝔻X∞,|ℂN=𝔹pN \\mathbb{D}_X^\\infty ,|{\\mathbb{C}^N} = \\mathbb{B}_p^N , in particular to Dirichlet-type and Dirichlet–Drury–Arveson-type spaces and algebras, as X=ℓp(ℤ+N,(1+α)s) X = {\\ell ^p}\\left( {_ + ^N,{{\\left( {1 + \\alpha } \\right)}^s}} \\right)) , s = (s1, s2, … ) and X=ℓp(ℤ+N,  (α!| α |!)t(1+| α |)s) X = {\\ell ^p}\\left( {\\mathbb{Z}_ + ^N,\\,\\,{{\\left( {{{\\alpha !} \\over {\\left| \\alpha \\right|!}}} \\right)}^t}{{\\left( {1 + \\left| \\alpha \\right|} \\right)}^s}} \\right) , s,t ≥ 0, as well as to their infinite variables analogues. We priviledged the largest possible scale of spaces and the most elementary instruments used.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"238 - 275"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The aim of these notes is to discuss the completeness of the dilated systems in a most general framework of an arbitrary sequence lattice X, including weighted ℓp spaces. In particular, general multiplicative and completely multiplicative sequences are treated. After the Fourier–Bohr transformation, we deal with the cyclicity property in function spaces on the corresponding infinite dimensional Reinhardt domain 𝔻X∞ \mathbb{D}_X^\infty . Functions with (weakly) dominating free term and (in particular) linearly factorable functions are considered. The most attention is paid to the cases of the polydiscs 𝔻X∞,|ℂN=𝔻N \mathbb{D}_X^\infty ,|{\mathbb{C}^N} = {\mathbb{D}^N} and the ℓp-unit balls 𝔻X∞,|ℂN=𝔹pN \mathbb{D}_X^\infty ,|{\mathbb{C}^N} = \mathbb{B}_p^N , in particular to Dirichlet-type and Dirichlet–Drury–Arveson-type spaces and algebras, as X=ℓp(ℤ+N,(1+α)s) X = {\ell ^p}\left( {_ + ^N,{{\left( {1 + \alpha } \right)}^s}} \right)) , s = (s1, s2, … ) and X=ℓp(ℤ+N,  (α!| α |!)t(1+| α |)s) X = {\ell ^p}\left( {\mathbb{Z}_ + ^N,\,\,{{\left( {{{\alpha !} \over {\left| \alpha \right|!}}} \right)}^t}{{\left( {1 + \left| \alpha \right|} \right)}^s}} \right) , s,t ≥ 0, as well as to their infinite variables analogues. We priviledged the largest possible scale of spaces and the most elementary instruments used.
格中扩张系统的循环性:乘法序列、多项式、狄利克雷型空间和代数
摘要本文的目的是讨论任意序列格X的最一般框架中扩展系统的完备性,包括加权的p空间。特别地,一般乘法和完全乘法序列被处理。在傅里叶-玻尔变换之后,我们处理了相应无穷维Reinhardt域𝔻X∞上函数空间的循环性 \mathbb{D}_x ^\infty 。考虑具有(弱)支配自由项的函数和(特别是)线性可因式函数。本文主要讨论了多盘𝔻X∞,| N=𝔻N的情况 \mathbb{D}_x ^\infty , b|{\mathbb{C}^ n} = {\mathbb{D}^ n} p-单位球𝔻X∞,| N=𝔹pN \mathbb{D}_x ^\infty , b|{\mathbb{C}^ n} = \mathbb{B}_p^N,特别是Dirichlet-type和Dirichlet-Drury-Arveson-type空间和代数,如X= l_p (N +N,(1+α)s) X= {\ell ^p}\left( {_ + n,{{\left( {1 + \alpha } \right)}^s}} \right), s = (s1, s2,…),X= p(N +N, (α!))t(1+| α |)s) X = {\ell ^p}\left( {\mathbb{Z}_ + n,\,\,{{\left( {{{\alpha !} \over {\left| \alpha \rightb| !}}} \right)}^t}{{\left( {1 + \left| \alpha \right|} \right)}^s}} \right), s,t≥0,以及它们的无限变量类似物。我们利用了最大的空间规模和最基本的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信