A HC model with countable set of spin values: uncountable set of Gibbs measures

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
U. Rozikov, F. Haydarov
{"title":"A HC model with countable set of spin values: uncountable set of Gibbs measures","authors":"U. Rozikov, F. Haydarov","doi":"10.1142/S0129055X22500398","DOIUrl":null,"url":null,"abstract":"We consider a hard core (HC) model with a countable set $\\mathbb{Z}$ of spin values on the Cayley tree. This model is defined by a countable set of parameters $\\lambda_{i}>0, i \\in \\mathbb{Z}\\setminus\\{0\\}$. For all possible values of parameters, we give limit points of the dynamical system generated by a function which describes the consistency condition for finite-dimensional measures. Also, we prove that every periodic Gibbs measure for the given model is either translation-invariant or periodic with period two. Moreover, we construct uncountable set of Gibbs measures for this HC model.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X22500398","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

Abstract

We consider a hard core (HC) model with a countable set $\mathbb{Z}$ of spin values on the Cayley tree. This model is defined by a countable set of parameters $\lambda_{i}>0, i \in \mathbb{Z}\setminus\{0\}$. For all possible values of parameters, we give limit points of the dynamical system generated by a function which describes the consistency condition for finite-dimensional measures. Also, we prove that every periodic Gibbs measure for the given model is either translation-invariant or periodic with period two. Moreover, we construct uncountable set of Gibbs measures for this HC model.
具有可数自旋值集的HC模型:不可数吉布斯测度集
我们考虑了一个具有Cayley树上自旋值的可数集$\mathbb{Z}$的硬核(HC)模型。该模型由一组可计数的参数$\lambda_{i}>0,i\in\mathbb{Z}\setminus\{0\}$定义。对于所有可能的参数值,我们给出了由描述有限维测度一致性条件的函数生成的动力系统的极限点。此外,我们还证明了给定模型的每个周期吉布斯测度要么是平移不变量,要么是周期为二的周期吉布斯测度。此外,我们为这个HC模型构造了不可计数的吉布斯测度集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信