Limit Theorems for Sums of Dependent and Non-Identical Bernoulli Random Variables

Q3 Business, Management and Accounting
Deepak Singh, Somesh Kumar
{"title":"Limit Theorems for Sums of Dependent and Non-Identical Bernoulli Random Variables","authors":"Deepak Singh, Somesh Kumar","doi":"10.1080/01966324.2019.1673266","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT In this paper, a new class of dependent Bernoulli random variables is defined. Here the probability of success at a given trial is a function of the number of successes and probabilities of successes in the previous trials. The moment structure for this model is derived. Further, the strong law of large numbers, the central limit theorem and the law of iterated logarithm are established under a condition that the success probabilities be monotone. Simulations are carried out to demonstrate the law of large numbers and the central limit theorem.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"150 - 165"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1673266","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1673266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

Abstract

SYNOPTIC ABSTRACT In this paper, a new class of dependent Bernoulli random variables is defined. Here the probability of success at a given trial is a function of the number of successes and probabilities of successes in the previous trials. The moment structure for this model is derived. Further, the strong law of large numbers, the central limit theorem and the law of iterated logarithm are established under a condition that the success probabilities be monotone. Simulations are carried out to demonstrate the law of large numbers and the central limit theorem.
相关与非等价伯努利随机变量和的极限定理
摘要本文定义了一类新的相关伯努利随机变量。在这里,给定试验的成功概率是成功次数和前几次试验成功概率的函数。推导了该模型的力矩结构。在成功概率为单调的条件下,建立了强大数定律、中心极限定理和迭代对数定律。通过仿真验证了大数定律和中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信