Ulrich Bauer , Michael Kerber , Fabian Roll , Alexander Rolle
{"title":"A unified view on the functorial nerve theorem and its variations","authors":"Ulrich Bauer , Michael Kerber , Fabian Roll , Alexander Rolle","doi":"10.1016/j.exmath.2023.04.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>The nerve theorem is a basic result of algebraic topology that plays a central role in computational and applied aspects of the subject. In topological data analysis, one often needs a nerve theorem that is functorial in an appropriate sense, and furthermore one often needs a nerve theorem for closed covers as well as for open covers. While the techniques for proving such functorial nerve theorems have long been available, there is unfortunately no general-purpose, explicit treatment of this topic in the literature. We address this by proving a variety of functorial nerve theorems. First, we show how one can use elementary techniques to prove nerve theorems for covers by </span>closed convex sets<span><span><span> in Euclidean space, and for covers of a </span>simplicial complex by </span>subcomplexes<span>. Then, we establish a more general, “unified” nerve theorem that subsumes many of the variants, using standard techniques from abstract homotopy theory.</span></span></p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000415","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15
Abstract
The nerve theorem is a basic result of algebraic topology that plays a central role in computational and applied aspects of the subject. In topological data analysis, one often needs a nerve theorem that is functorial in an appropriate sense, and furthermore one often needs a nerve theorem for closed covers as well as for open covers. While the techniques for proving such functorial nerve theorems have long been available, there is unfortunately no general-purpose, explicit treatment of this topic in the literature. We address this by proving a variety of functorial nerve theorems. First, we show how one can use elementary techniques to prove nerve theorems for covers by closed convex sets in Euclidean space, and for covers of a simplicial complex by subcomplexes. Then, we establish a more general, “unified” nerve theorem that subsumes many of the variants, using standard techniques from abstract homotopy theory.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.