Completions of discrete cluster categories of type A

IF 1.1 Q1 MATHEMATICS
Charles Paquette, Emine Yildirim
{"title":"Completions of discrete cluster categories of type A","authors":"Charles Paquette, Emine Yildirim","doi":"10.1112/tlm3.12025","DOIUrl":null,"url":null,"abstract":"We complete the discrete cluster categories of type A as defined by Igusa and Todorov, by embedding such a discrete cluster category inside a larger one, and then taking a certain Verdier quotient. The resulting category is a Hom‐finite Krull–Schmidt triangulated category containing the discrete cluster category as a full subcategory. The objects and Hom‐spaces in this new category can be described geometrically, even though the category is not 2‐Calabi–Yau and Ext‐spaces are not always symmetric. We describe all cluster‐tilting subcategories. Given such a subcategory, we define a cluster character that takes values in a ring with infinitely many indeterminates. Our cluster character is new in that it takes into account infinite‐dimensional subrepresentations of infinite‐dimensional ones. We show that it satisfies the multiplication formula and also the exchange formula, provided that the objects being exchanged satisfy some local Calabi–Yau conditions.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We complete the discrete cluster categories of type A as defined by Igusa and Todorov, by embedding such a discrete cluster category inside a larger one, and then taking a certain Verdier quotient. The resulting category is a Hom‐finite Krull–Schmidt triangulated category containing the discrete cluster category as a full subcategory. The objects and Hom‐spaces in this new category can be described geometrically, even though the category is not 2‐Calabi–Yau and Ext‐spaces are not always symmetric. We describe all cluster‐tilting subcategories. Given such a subcategory, we define a cluster character that takes values in a ring with infinitely many indeterminates. Our cluster character is new in that it takes into account infinite‐dimensional subrepresentations of infinite‐dimensional ones. We show that it satisfies the multiplication formula and also the exchange formula, provided that the objects being exchanged satisfy some local Calabi–Yau conditions.
A型离散聚类范畴的完备度
我们完成了Igusa和Todorov定义的A型离散聚类类别,通过将这样一个离散聚类类别嵌入一个较大的聚类类别中,然后取一定的Verdier商。由此产生的范畴是Hom‐finite Krull–Schmidt三角范畴,包含作为完整子范畴的离散聚类范畴。这个新类别中的对象和Hom空间可以用几何方法描述,即使该类别不是2-Calabi–Yau,Ext空间也不总是对称的。我们描述了所有集群倾斜的子类别。给定这样一个子类别,我们定义了一个簇特征,它在具有无限多个不确定性的环中取值。我们的聚类特征是新的,因为它考虑了无限维的无限维子表示。我们证明了它满足乘法公式和交换公式,前提是被交换的对象满足一些局部Calabi–Yau条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信