Gap type results for spacelike submanifolds with parallel mean curvature vector

IF 0.3 4区 数学 Q4 MATHEMATICS
W. F. C. Barboza, H. D. de Lima, M. Velásquez
{"title":"Gap type results for spacelike submanifolds with parallel mean curvature vector","authors":"W. F. C. Barboza, H. D. de Lima, M. Velásquez","doi":"10.7146/math.scand.a-133368","DOIUrl":null,"url":null,"abstract":"We deal with $n$-dimensional spacelike submanifolds immersed with parallel mean curvature vector (which is supposed to be either spacelike or timelike) in a pseudo-Riemannian space form $\\mathbb L_q^{n+p}(c)$ of index $1\\leq q\\leq p$ and constant sectional curvature $c\\in \\{-1,0,1\\}$. Under suitable constraints on the traceless second fundamental form, we adapt the technique developed by Yang and Li (Math. Notes 100 (2016) 298–308) to prove that such a spacelike submanifold must be totally umbilical. For this, we apply a maximum principle for complete noncompact Riemannian manifolds having polynomial volume growth, recently established by Alías, Caminha and Nascimento (Ann. Mat. Pura Appl. 200 (2021) 1637–1650).","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-133368","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We deal with $n$-dimensional spacelike submanifolds immersed with parallel mean curvature vector (which is supposed to be either spacelike or timelike) in a pseudo-Riemannian space form $\mathbb L_q^{n+p}(c)$ of index $1\leq q\leq p$ and constant sectional curvature $c\in \{-1,0,1\}$. Under suitable constraints on the traceless second fundamental form, we adapt the technique developed by Yang and Li (Math. Notes 100 (2016) 298–308) to prove that such a spacelike submanifold must be totally umbilical. For this, we apply a maximum principle for complete noncompact Riemannian manifolds having polynomial volume growth, recently established by Alías, Caminha and Nascimento (Ann. Mat. Pura Appl. 200 (2021) 1637–1650).
具有平行平均曲率向量的类空子流形的间隙型结果
我们在指标$1\leq q\leq p$和恒定截面曲率$c\in \{-1,0,1\}$的伪黎曼空间形式$\mathbb L_q^{n+p}(c)$中处理含有平行平均曲率向量(假定为空间或时间)的$n$维类空子流形。在无迹第二基本形式的适当约束下,我们采用了Yang和Li (Math。注100(2016)298-308)证明这种类空间子歧管必须是完全脐带的。为此,我们应用了最近由Alías, Caminha和Nascimento (Ann)建立的具有多项式体积增长的完全非紧黎曼流形的极大值原理。Mat. Pura apple . 200(2021) 1637-1650)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信