Gap type results for spacelike submanifolds with parallel mean curvature vector

Pub Date : 2022-12-04 DOI:10.7146/math.scand.a-133368
W. F. C. Barboza, H. D. de Lima, M. Velásquez
{"title":"Gap type results for spacelike submanifolds with parallel mean curvature vector","authors":"W. F. C. Barboza, H. D. de Lima, M. Velásquez","doi":"10.7146/math.scand.a-133368","DOIUrl":null,"url":null,"abstract":"We deal with $n$-dimensional spacelike submanifolds immersed with parallel mean curvature vector (which is supposed to be either spacelike or timelike) in a pseudo-Riemannian space form $\\mathbb L_q^{n+p}(c)$ of index $1\\leq q\\leq p$ and constant sectional curvature $c\\in \\{-1,0,1\\}$. Under suitable constraints on the traceless second fundamental form, we adapt the technique developed by Yang and Li (Math. Notes 100 (2016) 298–308) to prove that such a spacelike submanifold must be totally umbilical. For this, we apply a maximum principle for complete noncompact Riemannian manifolds having polynomial volume growth, recently established by Alías, Caminha and Nascimento (Ann. Mat. Pura Appl. 200 (2021) 1637–1650).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-133368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We deal with $n$-dimensional spacelike submanifolds immersed with parallel mean curvature vector (which is supposed to be either spacelike or timelike) in a pseudo-Riemannian space form $\mathbb L_q^{n+p}(c)$ of index $1\leq q\leq p$ and constant sectional curvature $c\in \{-1,0,1\}$. Under suitable constraints on the traceless second fundamental form, we adapt the technique developed by Yang and Li (Math. Notes 100 (2016) 298–308) to prove that such a spacelike submanifold must be totally umbilical. For this, we apply a maximum principle for complete noncompact Riemannian manifolds having polynomial volume growth, recently established by Alías, Caminha and Nascimento (Ann. Mat. Pura Appl. 200 (2021) 1637–1650).
分享
查看原文
具有平行平均曲率向量的类空子流形的间隙型结果
我们在指标$1\leq q\leq p$和恒定截面曲率$c\in \{-1,0,1\}$的伪黎曼空间形式$\mathbb L_q^{n+p}(c)$中处理含有平行平均曲率向量(假定为空间或时间)的$n$维类空子流形。在无迹第二基本形式的适当约束下,我们采用了Yang和Li (Math。注100(2016)298-308)证明这种类空间子歧管必须是完全脐带的。为此,我们应用了最近由Alías, Caminha和Nascimento (Ann)建立的具有多项式体积增长的完全非紧黎曼流形的极大值原理。Mat. Pura apple . 200(2021) 1637-1650)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信