Assessment of Lost Circulation Material Particle-Size Distribution on Fracture Sealing: A Numerical Study

IF 1.3 4区 工程技术 Q3 ENGINEERING, PETROLEUM
L. Lee, A. Dahi Taleghani
{"title":"Assessment of Lost Circulation Material Particle-Size Distribution on Fracture Sealing: A Numerical Study","authors":"L. Lee, A. Dahi Taleghani","doi":"10.2118/209201-pa","DOIUrl":null,"url":null,"abstract":"\n Lost circulation materials (LCMs) are essential to combat fluid loss while drilling and may put the whole operation at risk if a proper LCM design is not used. The focus of this research is understanding the function of LCMs in sealing fractures to reduce fluid loss. One important consideration in the success of fracture sealing is the particle-size distribution (PSD) of LCMs. Various studies have suggested different guidelines for obtaining the best size distribution of LCMs for effective fracture sealing based on limited laboratory experiments or field observations. Hence, there is a need for sophisticated numerical methods to improve the LCM design by providing some predictive capabilities. In this study, computational fluid dynamics (CFD) and discrete element methods (DEM) numerical simulations are coupled to investigate the influence of PSD of granular LCMs on fracture sealing. Dimensionless variables were introduced to compare cases with different PSDs. We validated the CFD-DEM model in reproducing specific laboratory observations of fracture-sealing experiments within the model boundary parameters. Our simulations suggested that a bimodally distributed blend would be the most effective design in comparison to other PSDs tested here.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/209201-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 5

Abstract

Lost circulation materials (LCMs) are essential to combat fluid loss while drilling and may put the whole operation at risk if a proper LCM design is not used. The focus of this research is understanding the function of LCMs in sealing fractures to reduce fluid loss. One important consideration in the success of fracture sealing is the particle-size distribution (PSD) of LCMs. Various studies have suggested different guidelines for obtaining the best size distribution of LCMs for effective fracture sealing based on limited laboratory experiments or field observations. Hence, there is a need for sophisticated numerical methods to improve the LCM design by providing some predictive capabilities. In this study, computational fluid dynamics (CFD) and discrete element methods (DEM) numerical simulations are coupled to investigate the influence of PSD of granular LCMs on fracture sealing. Dimensionless variables were introduced to compare cases with different PSDs. We validated the CFD-DEM model in reproducing specific laboratory observations of fracture-sealing experiments within the model boundary parameters. Our simulations suggested that a bimodally distributed blend would be the most effective design in comparison to other PSDs tested here.
裂缝密封中漏失材料粒径分布的数值研究
漏失材料(LCM)对于防止钻井液在钻井过程中漏失至关重要,如果不使用合适的LCM设计,可能会给整个作业带来风险。本研究的重点是了解lcm在密封裂缝以减少流体漏失方面的作用。裂缝密封成功的一个重要考虑因素是lcm的颗粒尺寸分布(PSD)。基于有限的实验室实验或现场观察,各种研究提出了不同的指导方针,以获得有效密封裂缝的最佳lcm尺寸分布。因此,需要复杂的数值方法,通过提供一些预测能力来改进LCM设计。本文采用计算流体力学(CFD)和离散元方法(DEM)相结合的数值模拟方法,研究了颗粒状lcm的PSD对裂缝密封的影响。引入无因次变量对不同psd的情况进行比较。我们在模型边界参数内再现了特定的裂缝密封实验实验室观察结果,从而验证了CFD-DEM模型。我们的模拟表明,与这里测试的其他psd相比,双峰分布混合将是最有效的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SPE Drilling & Completion
SPE Drilling & Completion 工程技术-工程:石油
CiteScore
4.20
自引率
7.10%
发文量
29
审稿时长
6-12 weeks
期刊介绍: Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信