{"title":"The dual of number sequences, Riordan polynomials, and Sheffer polynomials","authors":"T. He, J. L. Ramírez","doi":"10.1515/spma-2021-0153","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences. Many examples are given including dual of Hermite numbers and polynomials, dual of Bell numbers and polynomials, among other. The coefficients of some of these polynomials are related to the counting of different families of set partitions and permutations. We also studied the dual of Catalan numbers and dual of Fuss-Catalan numbers, giving several combinatorial identities.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"153 - 165"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2021-0153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences. Many examples are given including dual of Hermite numbers and polynomials, dual of Bell numbers and polynomials, among other. The coefficients of some of these polynomials are related to the counting of different families of set partitions and permutations. We also studied the dual of Catalan numbers and dual of Fuss-Catalan numbers, giving several combinatorial identities.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.