Block perturbation of symplectic matrices in Williamson’s theorem

IF 0.5 4区 数学 Q3 MATHEMATICS
G. Babu, H. K. Mishra
{"title":"Block perturbation of symplectic matrices in Williamson’s theorem","authors":"G. Babu, H. K. Mishra","doi":"10.4153/S0008439523000620","DOIUrl":null,"url":null,"abstract":"Williamson's theorem states that for any $2n \\times 2n$ real positive definite matrix $A$, there exists a $2n \\times 2n$ real symplectic matrix $S$ such that $S^TAS=D \\oplus D$, where $D$ is an $n\\times n$ diagonal matrix with positive diagonal entries which are known as the symplectic eigenvalues of $A$. Let $H$ be any $2n \\times 2n$ real symmetric matrix such that the perturbed matrix $A+H$ is also positive definite. In this paper, we show that any symplectic matrix $\\tilde{S}$ diagonalizing $A+H$ in Williamson's theorem is of the form $\\tilde{S}=S Q+\\mathcal{O}(\\|H\\|)$, where $Q$ is a $2n \\times 2n$ real symplectic as well as orthogonal matrix. Moreover, $Q$ is in $\\textit{symplectic block diagonal}$ form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of $A$. Consequently, we show that $\\tilde{S}$ and $S$ can be chosen so that $\\|\\tilde{S}-S\\|=\\mathcal{O}(\\|H\\|)$. Our results hold even if $A$ has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [$\\textit{Linear Algebra Appl., 525:45-58, 2017}$].","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439523000620","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Williamson's theorem states that for any $2n \times 2n$ real positive definite matrix $A$, there exists a $2n \times 2n$ real symplectic matrix $S$ such that $S^TAS=D \oplus D$, where $D$ is an $n\times n$ diagonal matrix with positive diagonal entries which are known as the symplectic eigenvalues of $A$. Let $H$ be any $2n \times 2n$ real symmetric matrix such that the perturbed matrix $A+H$ is also positive definite. In this paper, we show that any symplectic matrix $\tilde{S}$ diagonalizing $A+H$ in Williamson's theorem is of the form $\tilde{S}=S Q+\mathcal{O}(\|H\|)$, where $Q$ is a $2n \times 2n$ real symplectic as well as orthogonal matrix. Moreover, $Q$ is in $\textit{symplectic block diagonal}$ form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of $A$. Consequently, we show that $\tilde{S}$ and $S$ can be chosen so that $\|\tilde{S}-S\|=\mathcal{O}(\|H\|)$. Our results hold even if $A$ has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [$\textit{Linear Algebra Appl., 525:45-58, 2017}$].
威廉姆森定理中辛矩阵的块摄动
Williamson定理指出,对于任何$2n \times 2n$实正定矩阵$A$,存在一个$2n \times 2n$实辛矩阵$S$,使得$S^TAS=D \oplus D$,其中$D$是一个$n\times n$对角矩阵,其对角项被称为$A$的辛特征值。设$H$为任意$2n \times 2n$实对称矩阵,使得扰动矩阵$A+H$也是正定的。本文证明了Williamson定理中对角化$A+H$的任何辛矩阵$\tilde{S}$的形式为$\tilde{S}=S Q+\mathcal{O}(\|H\|)$,其中$Q$是一个$2n \times 2n$实辛矩阵和正交矩阵。此外,$Q$是$\textit{symplectic block diagonal}$形式,其块大小由$A$的辛特征值的两倍多重给出。因此,我们表明可以选择$\tilde{S}$和$S$,以便$\|\tilde{S}-S\|=\mathcal{O}(\|H\|)$。即使$A$有重复的辛特征值,我们的结果也成立。这推广了Idel, Gaona, and Wolf [$\textit{Linear Algebra Appl., 525:45-58, 2017}$]给出的辛矩阵对于非重复辛特征值的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
68
审稿时长
24 months
期刊介绍: The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year. To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics. Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année. Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信