Bernoulli wavelet method for numerical solutions of system of fuzzy integral equations

IF 1.1 Q2 MATHEMATICS, APPLIED
M. Ramadan, Mohamed R. Ali
{"title":"Bernoulli wavelet method for numerical solutions of system of fuzzy integral equations","authors":"M. Ramadan, Mohamed R. Ali","doi":"10.22034/CMDE.2021.22093.1257","DOIUrl":null,"url":null,"abstract":"In this paper, we have proposed an efficient numerical method to solve a system linear fuzzy Fredholm integral equations of the second kind based on Bernoulli wavelet method (BWM). Bernoulli wavelets have been generated by dilation and translation of Bernoulli polynomials. The aim of this paper is to apply Bernoulli wavelet method to obtain approximate solutions of a system of linear fredholm fuzzy integral equations. First we introduce properties of Bernoulli wavelets then we used it to transform the integral equations to the system of algebraic equations, the error estimates of the proposed method is given and compared by solving some numerical examples.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.22093.1257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we have proposed an efficient numerical method to solve a system linear fuzzy Fredholm integral equations of the second kind based on Bernoulli wavelet method (BWM). Bernoulli wavelets have been generated by dilation and translation of Bernoulli polynomials. The aim of this paper is to apply Bernoulli wavelet method to obtain approximate solutions of a system of linear fredholm fuzzy integral equations. First we introduce properties of Bernoulli wavelets then we used it to transform the integral equations to the system of algebraic equations, the error estimates of the proposed method is given and compared by solving some numerical examples.
模糊积分方程组数值解的伯努利小波方法
本文提出了一种基于伯努利小波法(Bernoulli wavelet method, BWM)的二阶系统线性模糊Fredholm积分方程的有效数值求解方法。伯努利小波是由伯努利多项式的展开和平移产生的。本文的目的是应用伯努利小波方法求线性fredholm模糊积分方程组的近似解。首先介绍了伯努利小波的性质,然后用它将积分方程转化为代数方程组,给出了该方法的误差估计,并通过算例进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信