The ABC of linear regression analysis: What every author and editor should know

Q2 Social Sciences
K. Baždarić, Dina Šverko, I. Salarić, A. Martinović, M. Lucijanić
{"title":"The ABC of linear regression analysis: What every author and editor should know","authors":"K. Baždarić, Dina Šverko, I. Salarić, A. Martinović, M. Lucijanić","doi":"10.3897/ese.2021.e63780","DOIUrl":null,"url":null,"abstract":"Regression analysis is a widely used statistical technique to build a model from a set of data on two or more variables. Linear regression is based on linear correlation, and assumes that change in one variable is accompanied by a proportional change in another variable. Simple linear regression, or bivariate regression, is used for predicting the value of one variable from another variable (predictor); however, multiple linear regression, which enables us to analyse more than one predictor or variable, is more commonly used. This paper explains both simple and multiple linear regressions illustrated with an example of analysis and also discusses some common errors in presenting the results of regression, including inappropriate titles, causal language, inappropriate conclusions, and misinterpretation.","PeriodicalId":35360,"journal":{"name":"European Science Editing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Science Editing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/ese.2021.e63780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 7

Abstract

Regression analysis is a widely used statistical technique to build a model from a set of data on two or more variables. Linear regression is based on linear correlation, and assumes that change in one variable is accompanied by a proportional change in another variable. Simple linear regression, or bivariate regression, is used for predicting the value of one variable from another variable (predictor); however, multiple linear regression, which enables us to analyse more than one predictor or variable, is more commonly used. This paper explains both simple and multiple linear regressions illustrated with an example of analysis and also discusses some common errors in presenting the results of regression, including inappropriate titles, causal language, inappropriate conclusions, and misinterpretation.
线性回归分析的ABC:每个作者和编辑都应该知道的
回归分析是一种广泛使用的统计技术,用于根据两个或多个变量的一组数据建立模型。线性回归是基于线性相关性的,并假设一个变量的变化伴随着另一变量的比例变化。简单线性回归或二元回归用于从另一个变量(预测器)预测一个变量的值;然而,多元线性回归更常用,它使我们能够分析多个预测因子或变量。本文通过一个分析例子解释了简单线性回归和多元线性回归,并讨论了在呈现回归结果时的一些常见错误,包括不恰当的标题、因果语言、不恰当的结论和误解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Science Editing
European Science Editing Social Sciences-Communication
CiteScore
1.90
自引率
0.00%
发文量
17
审稿时长
12 weeks
期刊介绍: EASE"s journal, European Science Editing , publishes articles, reports meetings, announces new developments and forthcoming events, reviews books, software and online resources, and highlights publications of interest to members.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信