Fluid conduits and shallow-reservoir structure defined by geoelectrical tomography at the Nirano Salse (Italy)

IF 4.2 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
G. Romano, M. Antonellini, D. Patella, A. Siniscalchi, A. Tallarico, Simona Tripaldi, A. Piombo
{"title":"Fluid conduits and shallow-reservoir structure defined by geoelectrical tomography at the Nirano Salse (Italy)","authors":"G. Romano, M. Antonellini, D. Patella, A. Siniscalchi, A. Tallarico, Simona Tripaldi, A. Piombo","doi":"10.5194/nhess-23-2719-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Mud volcanoes are fluid escape structures allowing for surface venting of hydrocarbons (mostly gas but also liquid condensates and oils) and water–sediment slurries. For a better understanding of mud volcano dynamics, the characterization of the fluid dynamics within mud volcano conduits; the presence, extent, and depth of the fluid reservoirs; and the connection among aquifers, conduits, and mud reservoirs play a key role. To this aim, we performed a geoelectrical survey in the Nirano Salse Regional Nature Reserve, located at the edge of the northern Apennines (Fiorano Modenese, Italy), an area characterized by several active mud fluid vents. This study, for the first time, images the resistivity structure of the subsoil along two perpendicular cross sections down to a depth of 250 m. The electrical models show a clear difference between the northern and southern sectors of the area, where the latter hosts the main discontinuities. Shallow reservoirs, where fluid muds accumulate, are spatially associated with the main fault/fracture controlling the migration routes associated with surface venting and converge at depth towards a common clayey horizon. There is no evidence of a shallow mud caldera below the Nirano area. These findings represent a step forward in the comprehension of the Nirano Salse plumbing system and in pinpointing local site hazards, which promotes safer tourist access to the area along restricted routes.\n","PeriodicalId":18922,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/nhess-23-2719-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Mud volcanoes are fluid escape structures allowing for surface venting of hydrocarbons (mostly gas but also liquid condensates and oils) and water–sediment slurries. For a better understanding of mud volcano dynamics, the characterization of the fluid dynamics within mud volcano conduits; the presence, extent, and depth of the fluid reservoirs; and the connection among aquifers, conduits, and mud reservoirs play a key role. To this aim, we performed a geoelectrical survey in the Nirano Salse Regional Nature Reserve, located at the edge of the northern Apennines (Fiorano Modenese, Italy), an area characterized by several active mud fluid vents. This study, for the first time, images the resistivity structure of the subsoil along two perpendicular cross sections down to a depth of 250 m. The electrical models show a clear difference between the northern and southern sectors of the area, where the latter hosts the main discontinuities. Shallow reservoirs, where fluid muds accumulate, are spatially associated with the main fault/fracture controlling the migration routes associated with surface venting and converge at depth towards a common clayey horizon. There is no evidence of a shallow mud caldera below the Nirano area. These findings represent a step forward in the comprehension of the Nirano Salse plumbing system and in pinpointing local site hazards, which promotes safer tourist access to the area along restricted routes.
意大利Nirano Salse的流体管道和浅层储层构造
摘要泥火山是一种流体逸出结构,允许碳氢化合物(主要是气体,但也有液态凝析油和油)和水沉积物泥浆在地表喷发。为了更好地理解泥火山动力学,对泥火山导管内流体动力学进行了表征;流体储层的存在、范围和深度;其中,含水层、管道和泥浆储层之间的连接起着关键作用。为此,我们在位于亚平宁山脉北部(意大利Fiorano Modenese)边缘的Nirano Salse区域自然保护区进行了地电调查,该地区以几个活跃的泥浆流体喷口为特征。本研究首次对250 m深度下沿两个垂直截面的底土电阻率结构进行了成像。电模型显示了该地区北部和南部地区之间的明显差异,后者拥有主要的不连续区。流体泥浆聚集的浅层储层在空间上与控制与地表通风相关的运移路线的主断层/裂缝有关,并在深度上向共同的粘土层聚集。没有证据表明在涅拉诺地区下面有一个浅泥火山口。这些发现代表了对尼拉诺萨尔斯管道系统的理解向前迈进了一步,并确定了当地的危险,这促进了游客沿着限制路线更安全地进入该地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Hazards and Earth System Sciences
Natural Hazards and Earth System Sciences 地学-地球科学综合
CiteScore
7.60
自引率
6.50%
发文量
192
审稿时长
3.8 months
期刊介绍: Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信