{"title":"Prediction of nucleosome dynamic interval based on long-short-term memory network (LSTM).","authors":"Jianli Liu, Deliang Zhou, Wen Jin","doi":"10.1142/S0219720022500093","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleosome localization is a dynamic process and consists of nucleosome dynamic intervals (NDIs). We preprocessed nucleosome sequence data as time series data (TSD) and developed a long short-term memory network (LSTM) model for training time series data (TSD; LSTM-TSD model) using iterative training and feature learning that predicts NDIs with high accuracy. Sn, Sp, Acc, and MCC of the obtained LSTM model is 91.88%, 92.72%, 92.30%, and 84.61%, respectively. LSTM model could precisely predict the NDIs of yeast 16 chromosome. The NDIs contain 90.29% of nucleosome core DNA and 91.20% of nucleosome central sites, indicating that NDIs have high confidence. We found that the binding sites of transcriptional proteins and other proteins are outside NDIs, not in NDIs. These results are important for analysis of nucleosome localization and gene transcriptional regulation.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"1 1","pages":"2250009"},"PeriodicalIF":0.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022500093","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleosome localization is a dynamic process and consists of nucleosome dynamic intervals (NDIs). We preprocessed nucleosome sequence data as time series data (TSD) and developed a long short-term memory network (LSTM) model for training time series data (TSD; LSTM-TSD model) using iterative training and feature learning that predicts NDIs with high accuracy. Sn, Sp, Acc, and MCC of the obtained LSTM model is 91.88%, 92.72%, 92.30%, and 84.61%, respectively. LSTM model could precisely predict the NDIs of yeast 16 chromosome. The NDIs contain 90.29% of nucleosome core DNA and 91.20% of nucleosome central sites, indicating that NDIs have high confidence. We found that the binding sites of transcriptional proteins and other proteins are outside NDIs, not in NDIs. These results are important for analysis of nucleosome localization and gene transcriptional regulation.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.