{"title":"Monotonicity of random walks’ states on finite grids","authors":"Anna O. Zadorozhnuyk","doi":"10.33581/2520-6508-2022-1-38-45","DOIUrl":null,"url":null,"abstract":"In this paper two ways to order the nodes of a graph with respect to an arbitrary node are considered, both connected to random walks on the graph. The first one is the order according to probabilities of states of a random walk of fixed length started in that arbitrary node. The walks considered here are lazy walks – instead of making a step they are allowed to stay in the same node. A class of graphs, where such order the corresponds to the weak order by geodesic distances, was found. Square and toric n-dimensional grids are shown to be instances of this class. The second way of ordering is resistance distance to a fixed node. For another class of graphs, a pair of vertices with maximal resistance distance between them is established. Grids are again shown to be an example of graphs belonging to this class.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2022-1-38-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper two ways to order the nodes of a graph with respect to an arbitrary node are considered, both connected to random walks on the graph. The first one is the order according to probabilities of states of a random walk of fixed length started in that arbitrary node. The walks considered here are lazy walks – instead of making a step they are allowed to stay in the same node. A class of graphs, where such order the corresponds to the weak order by geodesic distances, was found. Square and toric n-dimensional grids are shown to be instances of this class. The second way of ordering is resistance distance to a fixed node. For another class of graphs, a pair of vertices with maximal resistance distance between them is established. Grids are again shown to be an example of graphs belonging to this class.