{"title":"Hypotheses tests on the skewness parameter in a multivariate generalized hyperbolic distribution","authors":"M. Galea, F. Vilca, C. Zeller","doi":"10.1214/21-BJPS502","DOIUrl":null,"url":null,"abstract":"The class of generalized hyperbolic (GH) distributions is generated by a mean-variance mixture of a multivariate Gaussian with a generalized inverse Gaussian (GIG) distribution. This rich family of GH distributions includes some well-known heavy-tailed and symmetric multivariate distributions, including the Normal Inverse Gaussian and some members of the family of scale-mixture of skew-normal distributions. The class of GH distributions has received considerable attention in finance and signal processing applications. In this paper, we propose the likelihood ratio (LR) test to test hypotheses about the skewness parameter of a GH distribution. Due to the complexity of the likelihood function, the EM algorithm is used to find the maximum likelihood estimates both in the complete model and the reduced model. For comparative purposes and due to its simplicity, we also consider the Gradient (G) test. A simulation study shows that the LR and G tests are usually able to achieve the desired significance levels and the testing power increases as the asymmetry increases. The methodology developed in the paper is applied to two real datasets.","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-BJPS502","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The class of generalized hyperbolic (GH) distributions is generated by a mean-variance mixture of a multivariate Gaussian with a generalized inverse Gaussian (GIG) distribution. This rich family of GH distributions includes some well-known heavy-tailed and symmetric multivariate distributions, including the Normal Inverse Gaussian and some members of the family of scale-mixture of skew-normal distributions. The class of GH distributions has received considerable attention in finance and signal processing applications. In this paper, we propose the likelihood ratio (LR) test to test hypotheses about the skewness parameter of a GH distribution. Due to the complexity of the likelihood function, the EM algorithm is used to find the maximum likelihood estimates both in the complete model and the reduced model. For comparative purposes and due to its simplicity, we also consider the Gradient (G) test. A simulation study shows that the LR and G tests are usually able to achieve the desired significance levels and the testing power increases as the asymmetry increases. The methodology developed in the paper is applied to two real datasets.
期刊介绍:
The Brazilian Journal of Probability and Statistics aims to publish high quality research papers in applied probability, applied statistics, computational statistics, mathematical statistics, probability theory and stochastic processes.
More specifically, the following types of contributions will be considered:
(i) Original articles dealing with methodological developments, comparison of competing techniques or their computational aspects.
(ii) Original articles developing theoretical results.
(iii) Articles that contain novel applications of existing methodologies to practical problems. For these papers the focus is in the importance and originality of the applied problem, as well as, applications of the best available methodologies to solve it.
(iv) Survey articles containing a thorough coverage of topics of broad interest to probability and statistics. The journal will occasionally publish book reviews, invited papers and essays on the teaching of statistics.