Document clustering

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Irene Cozzolino, M. Ferraro
{"title":"Document clustering","authors":"Irene Cozzolino, M. Ferraro","doi":"10.1002/wics.1588","DOIUrl":null,"url":null,"abstract":"Nowadays, the explosive growth in text data emphasizes the need for developing new and computationally efficient methods and credible theoretical support tailored for analyzing such large‐scale data. Given the vast amount of this kind of unstructured data, the majority of it is not classified, hence unsupervised learning techniques show to be useful in this field. Document clustering has proven to be an efficient tool in organizing textual documents and it has been widely applied in different areas from information retrieval to topic modeling. Before introducing the proposals of document clustering algorithms, the principal steps of the whole process, including the mathematical representation of documents and the preprocessing phase, are discussed. Then, the main clustering algorithms used for text data are critically analyzed, considering prototype‐based, graph‐based, hierarchical, and model‐based approaches.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1588","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the explosive growth in text data emphasizes the need for developing new and computationally efficient methods and credible theoretical support tailored for analyzing such large‐scale data. Given the vast amount of this kind of unstructured data, the majority of it is not classified, hence unsupervised learning techniques show to be useful in this field. Document clustering has proven to be an efficient tool in organizing textual documents and it has been widely applied in different areas from information retrieval to topic modeling. Before introducing the proposals of document clustering algorithms, the principal steps of the whole process, including the mathematical representation of documents and the preprocessing phase, are discussed. Then, the main clustering algorithms used for text data are critically analyzed, considering prototype‐based, graph‐based, hierarchical, and model‐based approaches.
文档聚类
如今,文本数据的爆炸性增长强调了开发新的、计算高效的方法以及为分析此类大规模数据量身定制的可信理论支持的必要性。鉴于这类非结构化数据数量巨大,其中大多数都没有分类,因此无监督学习技术在该领域显示出了有用性。文档聚类已被证明是组织文本文档的有效工具,它已被广泛应用于从信息检索到主题建模的各个领域。在介绍文档聚类算法的建议之前,讨论了整个过程的主要步骤,包括文档的数学表示和预处理阶段。然后,考虑到基于原型、基于图、分层和基于模型的方法,对用于文本数据的主要聚类算法进行了批判性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信