{"title":"Exploring Low-Carbon Design and Construction Techniques: Lessons from Vernacular Architecture","authors":"Ming Hu","doi":"10.3390/cli11080165","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive review of low-carbon materials and construction techniques commonly used in vernacular buildings. The study highlights the relevance of vernacular architecture in the context of the shift towards sustainable construction practices. A combination of a climatic zone map, vernacular language type map, and continent map is used to identify the vernacular regions. Eight bio-based low-carbon materials, including wood, adobe, rammed earth, cob, sod, thatch, bamboo, and straw bales, are discussed, along with their characteristics, availability, and environmental impacts. The construction techniques associated with these materials are explained, emphasizing their simplicity, cost-effectiveness, and adaptability. The paper also explores two important design approaches: design for disassembly and design for modularity that were used in vernacular building. The review found the use of low-carbon materials and construction techniques derived from vernacular architecture can contribute to minimizing waste, reducing environmental impacts, and promoting a circular economy in the building industry. This research provides valuable insights for architects, engineers, and policymakers seeking sustainable alternatives in the construction sector.","PeriodicalId":37615,"journal":{"name":"Climate","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11080165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a comprehensive review of low-carbon materials and construction techniques commonly used in vernacular buildings. The study highlights the relevance of vernacular architecture in the context of the shift towards sustainable construction practices. A combination of a climatic zone map, vernacular language type map, and continent map is used to identify the vernacular regions. Eight bio-based low-carbon materials, including wood, adobe, rammed earth, cob, sod, thatch, bamboo, and straw bales, are discussed, along with their characteristics, availability, and environmental impacts. The construction techniques associated with these materials are explained, emphasizing their simplicity, cost-effectiveness, and adaptability. The paper also explores two important design approaches: design for disassembly and design for modularity that were used in vernacular building. The review found the use of low-carbon materials and construction techniques derived from vernacular architecture can contribute to minimizing waste, reducing environmental impacts, and promoting a circular economy in the building industry. This research provides valuable insights for architects, engineers, and policymakers seeking sustainable alternatives in the construction sector.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.