Elastic wave propagation in a periodic composite beam structure: A new model for band gaps incorporating surface energy, transverse shear and rotational inertia effects

Q3 Engineering
R. Gao, G. Y. Zhang, T. Ioppolo, Xin-Lin Gao
{"title":"Elastic wave propagation in a periodic composite beam structure: A new model for band gaps incorporating surface energy, transverse shear and rotational inertia effects","authors":"R. Gao, G. Y. Zhang, T. Ioppolo, Xin-Lin Gao","doi":"10.1142/S2424913018400052","DOIUrl":null,"url":null,"abstract":"A new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Timoshenko beam model that incorporates the surface energy, transverse shear and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when the surface energy effect is not considered. It is shown that the band gaps predicted by the current model depend on the surface elastic constants of each constituent material, beam thickness, unit cell size, and volume fraction. The numerical results reveal that the band gap based on the current non-classical model is always larger than that given by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2424913018400052","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424913018400052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 14

Abstract

A new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Timoshenko beam model that incorporates the surface energy, transverse shear and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when the surface energy effect is not considered. It is shown that the band gaps predicted by the current model depend on the surface elastic constants of each constituent material, beam thickness, unit cell size, and volume fraction. The numerical results reveal that the band gap based on the current non-classical model is always larger than that given by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.
弹性波在周期复合梁结构中的传播:一个新的带隙模型,包含表面能、横向剪切和转动惯量效应
利用非经典Timoshenko梁模型,结合表面能、横向剪切和转动惯量效应,建立了一个确定周期性复合梁结构中弹性波传播带隙的新模型。公式中采用了周期结构的Bloch定理和传递矩阵方法。当不考虑表面能效应时,新模型简化为经典的基于弹性的模型。结果表明,当前模型预测的带隙取决于每种组成材料的表面弹性常数、梁厚度、晶胞尺寸和体积分数。数值结果表明,当束层厚度很小时,基于当前非经典模型的带隙总是大于经典模型给出的带隙,但随着束层厚度的增大,带隙差异逐渐减小。此外,根据当前模型和经典模型,发现产生带隙的第一频率和带隙尺寸随着晶胞长度的增加而减小。此外,观察到体积分数对带隙尺寸有显著影响,通过调整体积分数和材料参数可以获得大的带隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信