On topologically trivial automorphisms of compact Kähler manifolds and algebraic surfaces

IF 0.6 4区 数学 Q3 MATHEMATICS
F. Catanese, Wenfei Liu
{"title":"On topologically trivial automorphisms of compact Kähler manifolds and algebraic surfaces","authors":"F. Catanese, Wenfei Liu","doi":"10.4171/RLM/933","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate automorphisms of compact Kähler manifolds with different levels of topological triviality. In particular, we provide several examples of smooth complex projective surfaces X whose groups of C∞-isotopically trivial automorphisms, resp. cohomologically trivial automorphisms, have a number of connected components which can be arbitrarily large. Dedicated to the memory of the ‘red’ Bishop of Italian Mathematics, Edoardo Vesentini (1928-2020).","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/RLM/933","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we investigate automorphisms of compact Kähler manifolds with different levels of topological triviality. In particular, we provide several examples of smooth complex projective surfaces X whose groups of C∞-isotopically trivial automorphisms, resp. cohomologically trivial automorphisms, have a number of connected components which can be arbitrarily large. Dedicated to the memory of the ‘red’ Bishop of Italian Mathematics, Edoardo Vesentini (1928-2020).
紧致Kähler流形和代数曲面的拓扑平凡自同构
本文研究了具有不同拓扑平凡性的紧致Kähler流形的自同构。特别地,我们提供了光滑复投影曲面X的几个例子,其C∞-同位素平凡自同构群分别为。上同调平凡自同构,具有许多可以任意大的连通分量。献给意大利数学“红色”主教爱德华多·维森蒂尼(1928-2020)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信