Starling Formation-Flying Optical Experiment (StarFOX): System Design and Preflight Verification

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
J. Kruger, Adam W. Koenig, S. D’Amico
{"title":"Starling Formation-Flying Optical Experiment (StarFOX): System Design and Preflight Verification","authors":"J. Kruger, Adam W. Koenig, S. D’Amico","doi":"10.2514/1.a35598","DOIUrl":null,"url":null,"abstract":"The Starling Formation-Flying Optical Experiment (StarFOX) is intended as the first on-orbit demonstration of autonomous distributed angles-only navigation for spacecraft swarms. StarFOX applies the angles-only Absolute and Relative Trajectory System (ARTMS), a navigation architecture consisting of three innovative algorithms: image processing, which identifies and tracks multiple targets in images from a single camera without a priori relative orbit knowledge; batch orbit determination, which autonomously initializes orbit estimates for visible swarm members; and sequential orbit determination, which continuously refines the swarm state by fusing measurements from multiple observers exchanged over an intersatellite link. Nonlinear dynamics and measurement models provide sufficient observability to estimate absolute orbits, relative orbits, and auxiliary states using only bearing angles without maneuvers. StarFOX will be conducted using a four-CubeSat swarm as part of the NASA Starling mission, and simulations of experiment scenarios demonstrate that ARTMS meets mission performance requirements. Results indicate that mean bearing angle errors are below 35′′ ([Formula: see text]), initial target range errors are below 20% of true separation, and steady-state range errors are below 2% ([Formula: see text]). Absolute orbit estimation accuracy is on the order of 100 m. Hardware-in-the-loop tests display robust navigation under a variety of conditions, enabling autonomous, ubiquitous navigation with minimal ground interaction for future distributed missions.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35598","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 4

Abstract

The Starling Formation-Flying Optical Experiment (StarFOX) is intended as the first on-orbit demonstration of autonomous distributed angles-only navigation for spacecraft swarms. StarFOX applies the angles-only Absolute and Relative Trajectory System (ARTMS), a navigation architecture consisting of three innovative algorithms: image processing, which identifies and tracks multiple targets in images from a single camera without a priori relative orbit knowledge; batch orbit determination, which autonomously initializes orbit estimates for visible swarm members; and sequential orbit determination, which continuously refines the swarm state by fusing measurements from multiple observers exchanged over an intersatellite link. Nonlinear dynamics and measurement models provide sufficient observability to estimate absolute orbits, relative orbits, and auxiliary states using only bearing angles without maneuvers. StarFOX will be conducted using a four-CubeSat swarm as part of the NASA Starling mission, and simulations of experiment scenarios demonstrate that ARTMS meets mission performance requirements. Results indicate that mean bearing angle errors are below 35′′ ([Formula: see text]), initial target range errors are below 20% of true separation, and steady-state range errors are below 2% ([Formula: see text]). Absolute orbit estimation accuracy is on the order of 100 m. Hardware-in-the-loop tests display robust navigation under a variety of conditions, enabling autonomous, ubiquitous navigation with minimal ground interaction for future distributed missions.
燕鸥编队飞行光学实验(StarFOX):系统设计与飞行前验证
椋鸟编队飞行光学实验(StarFOX)旨在作为航天器群自主分布式角度导航的第一次在轨演示。StarFOX应用了只考虑角度的绝对和相对轨迹系统(ARTMS),这是一种由三种创新算法组成的导航架构:图像处理,在没有先验相对轨道知识的情况下识别和跟踪来自单个相机的图像中的多个目标;批量轨道确定,自动初始化可见群成员的轨道估计;序贯轨道确定,通过融合在星间链路上交换的多个观测者的测量结果,不断改进群状态。非线性动力学和测量模型提供了足够的可观测性来估计绝对轨道、相对轨道和辅助状态,仅使用方位角而不使用机动。作为NASA Starling任务的一部分,StarFOX将使用一个四颗立方体卫星群进行,实验场景的模拟表明,ARTMS满足任务性能要求。结果表明,平均方位角误差小于35”([公式:见文]),初始目标距离误差小于真分离的20%,稳态距离误差小于2%([公式:见文])。绝对轨道估计精度在100米左右。硬件在环测试显示了在各种条件下的强大导航能力,为未来的分布式任务实现了自主、无处不在的导航,与地面的交互最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信