An improved algorithm for solving an inverse eigenvalue problem for band matrices

Pub Date : 2022-12-03 DOI:10.13001/ela.2022.7475
Kanae Akaiwa, Akira Yoshida, Koichi Kondo
{"title":"An improved algorithm for solving an inverse eigenvalue problem for band matrices","authors":"Kanae Akaiwa, Akira Yoshida, Koichi Kondo","doi":"10.13001/ela.2022.7475","DOIUrl":null,"url":null,"abstract":"The construction of matrices with prescribed eigenvalues is a kind of inverse eigenvalue problems. The authors proposed an algorithm for constructing band oscillatory matrices with prescribed eigenvalues based on the extended discrete hungry Toda equation (Numer. Algor. 75:1079--1101, 2017). In this paper, we develop a new algorithm for constructing band matrices with prescribed eigenvalues based on a generalization of the extended discrete hungry Toda equation. The new algorithm improves the previous algorithm so that the new one can produce more generic band matrices than the previous one in a certain sense. We compare the new algorithm with the previous one by numerical examples. Especially, we show an example of band oscillatory matrices which the new algorithm can produce but the previous one cannot.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of matrices with prescribed eigenvalues is a kind of inverse eigenvalue problems. The authors proposed an algorithm for constructing band oscillatory matrices with prescribed eigenvalues based on the extended discrete hungry Toda equation (Numer. Algor. 75:1079--1101, 2017). In this paper, we develop a new algorithm for constructing band matrices with prescribed eigenvalues based on a generalization of the extended discrete hungry Toda equation. The new algorithm improves the previous algorithm so that the new one can produce more generic band matrices than the previous one in a certain sense. We compare the new algorithm with the previous one by numerical examples. Especially, we show an example of band oscillatory matrices which the new algorithm can produce but the previous one cannot.
分享
查看原文
带矩阵特征值反问题的一种改进算法
具有规定特征值的矩阵的构造是一类特征值逆问题。作者基于扩展的离散饥饿Toda方程(Numer.Algor.75:1079--11012017),提出了一种构造具有规定特征值的带振荡矩阵的算法。本文在推广离散饥饿Toda方程的基础上,提出了一种构造具有规定特征值的带矩阵的新算法。新算法改进了以前的算法,使得在某种意义上,新算法可以产生比以前算法更多的通用带矩阵。我们通过算例将新算法与以前的算法进行了比较。特别是,我们给出了一个带振荡矩阵的例子,新算法可以产生,而以前的算法不能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信