{"title":"A study of the influence of coflow on flame dynamics in impinging jet diffusion flames","authors":"Hongxu Li, Jieyu Jiang, Meng Sun, Yongzhe Yu, Chunjie Sui, Bin Zhang","doi":"10.1080/14685248.2021.1917769","DOIUrl":null,"url":null,"abstract":"Non-premixed impinging jet flames with different coflow conditions are performed using PIV technology combined with numerical simulation to investigate flame instability in the vicinity of wall. Results indicate that the increase of coflow velocity results in a more chaotic flow field and higher fuel efficiency, and the increase of coflow temperature leads to ignition advance and the increase of NO concentration. These can be attributed to the coupling effect of Kelvin-Helmholtz instability, convective instability and Rayleigh-Taylor instability. High coflow velocity is more likely to induce Kelvin-Helmholtz instability and convective instability, and the increase of coflow temperature enhances Rayleigh-Taylor instability and convective instability. Due to the impact effect in the vicinity of wall, the flame instability is more likely to be induced at high coflow velocity. Meanwhile, the increase of coflow temperature can inhibit flame wrinkles. The flame dynamics is affected by turbulent mixing, head-on collision, shear and convective behaviors in non-premixed flames.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"22 1","pages":"461 - 480"},"PeriodicalIF":1.5000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14685248.2021.1917769","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.1917769","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2
Abstract
Non-premixed impinging jet flames with different coflow conditions are performed using PIV technology combined with numerical simulation to investigate flame instability in the vicinity of wall. Results indicate that the increase of coflow velocity results in a more chaotic flow field and higher fuel efficiency, and the increase of coflow temperature leads to ignition advance and the increase of NO concentration. These can be attributed to the coupling effect of Kelvin-Helmholtz instability, convective instability and Rayleigh-Taylor instability. High coflow velocity is more likely to induce Kelvin-Helmholtz instability and convective instability, and the increase of coflow temperature enhances Rayleigh-Taylor instability and convective instability. Due to the impact effect in the vicinity of wall, the flame instability is more likely to be induced at high coflow velocity. Meanwhile, the increase of coflow temperature can inhibit flame wrinkles. The flame dynamics is affected by turbulent mixing, head-on collision, shear and convective behaviors in non-premixed flames.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.