When do quasi-cyclic codes have $\mathbb F_{q^l}$-linear image?

IF 0.5 Q3 MATHEMATICS
R. Nekooei, Z. Pourshafiey
{"title":"When do quasi-cyclic codes have $\\mathbb F_{q^l}$-linear image?","authors":"R. Nekooei, Z. Pourshafiey","doi":"10.24330/ieja.1198011","DOIUrl":null,"url":null,"abstract":"A length $ml$, index $l$ quasi-cyclic code can be viewed as a cyclic code of length $m$ over the field $\\mathbb F_{q^l}$ via a basis of the extension $\\mathbb F_{q^l}/\\mathbb F_{q}$. \nThis cyclic code is an additive cyclic code. \nIn [C. Güneri, F. Özdemir, P. Solé, On the additive cyclic structure of quasi-cyclic codes, Discrete. Math., 341 (2018), 2735-2741], authors characterize \nthe $(l,m)$ values for one-generator quasi-cyclic codes for which it is \nimpossible to have an $\\mathbb F_{q^l}$-linear image for any choice \nof the polynomial basis of $\\mathbb F_{q^l}/\\mathbb F_{q}$. \nBut this characterization for some $(l,m)$ \nvalues is very intricate. In this paper, by the use of this characterization, we give a more simple characterization.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1198011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A length $ml$, index $l$ quasi-cyclic code can be viewed as a cyclic code of length $m$ over the field $\mathbb F_{q^l}$ via a basis of the extension $\mathbb F_{q^l}/\mathbb F_{q}$. This cyclic code is an additive cyclic code. In [C. Güneri, F. Özdemir, P. Solé, On the additive cyclic structure of quasi-cyclic codes, Discrete. Math., 341 (2018), 2735-2741], authors characterize the $(l,m)$ values for one-generator quasi-cyclic codes for which it is impossible to have an $\mathbb F_{q^l}$-linear image for any choice of the polynomial basis of $\mathbb F_{q^l}/\mathbb F_{q}$. But this characterization for some $(l,m)$ values is very intricate. In this paper, by the use of this characterization, we give a more simple characterization.
什么时候准循环码有$\mathbb F_{q^l}$-线性图像?
一个长度$ml$,索引$l$的准循环码可以看作是一个长度$m$的循环码,通过扩展$\mathbb F_{q^l}/\mathbb F_{q}$的基,在字段$\mathbb F_{q}$上。这个循环码是一个加性循环码。在[C。g neri, F. Özdemir, P. sol,关于拟循环码的加性循环结构,离散。数学。对于任意选择$\mathbb F_{q^l}/\mathbb F_{q}$的多项式基,都不可能有$\mathbb F_{q}$线性图像的一元拟循环码,[j], 341(2018), 2735-2741],作者刻画了$(l,m)$值。但是对于某些$(l,m)$值,这种表征是非常复杂的。在本文中,利用这一表征,我们给出了一个更简单的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信