M. Kako, K. Miyabe, Shinpei Fukazawa, Shinji Kanzawa, M. Yasui, M. Yamada, Y. Maeda, Z. Slanina, F. Uhlík, L. Adamowicz, Ilias Papadopoulos, D. Guldi, Mako Furukawa, S. Nagase, T. Akasaka
{"title":"Photoreactions of Sc3N@C80 with Disilirane, Silirane, and Digermirane: A Photochemical Method to Separate Ih and D5h Isomers","authors":"M. Kako, K. Miyabe, Shinpei Fukazawa, Shinji Kanzawa, M. Yasui, M. Yamada, Y. Maeda, Z. Slanina, F. Uhlík, L. Adamowicz, Ilias Papadopoulos, D. Guldi, Mako Furukawa, S. Nagase, T. Akasaka","doi":"10.3390/photochem2010010","DOIUrl":null,"url":null,"abstract":"Under photoirradiation, Sc3N@Ih-C80 reacted readily with disilirane 1, silirane 4, and digermirane 7 to afford the corresponding 1:1 adducts, whereas Sc3N@D5h-C80 was recovered without producing those adducts. Based on these results, we described a novel method for the exclusive separation of Ih and D5h isomers of Sc3N@C80. The method includes three procedures: selective derivatization of Sc3N@Ih-C80 using 1, 4, and 7, facile HPLC separation of pristine Sc3N@D5h-C80 and Sc3N@Ih-C80 derivatives, and thermolysis of Sc3N@Ih-C80 derivatives to collect pristine Sc3N@Ih-C80. In addition, laser flash photolysis experiments were conducted to elucidate the reaction mechanism. Decay of the transient absorption of 3Sc3N@Ih-C80* was observed to be enhanced in the presence of 1, indicating the quenching process. When Sc3N@D5h-C80 was used, the transient absorption was much less intensive. Therefore, the quenching of 3Sc3N@D5h-C80* by 1 could not be confirmed. Furthermore, we applied time-dependent density functional theory (TD-DFT) calculations of the photoexcited states of Sc3N@C80 to obtain insights into the reaction mechanism.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/photochem2010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Under photoirradiation, Sc3N@Ih-C80 reacted readily with disilirane 1, silirane 4, and digermirane 7 to afford the corresponding 1:1 adducts, whereas Sc3N@D5h-C80 was recovered without producing those adducts. Based on these results, we described a novel method for the exclusive separation of Ih and D5h isomers of Sc3N@C80. The method includes three procedures: selective derivatization of Sc3N@Ih-C80 using 1, 4, and 7, facile HPLC separation of pristine Sc3N@D5h-C80 and Sc3N@Ih-C80 derivatives, and thermolysis of Sc3N@Ih-C80 derivatives to collect pristine Sc3N@Ih-C80. In addition, laser flash photolysis experiments were conducted to elucidate the reaction mechanism. Decay of the transient absorption of 3Sc3N@Ih-C80* was observed to be enhanced in the presence of 1, indicating the quenching process. When Sc3N@D5h-C80 was used, the transient absorption was much less intensive. Therefore, the quenching of 3Sc3N@D5h-C80* by 1 could not be confirmed. Furthermore, we applied time-dependent density functional theory (TD-DFT) calculations of the photoexcited states of Sc3N@C80 to obtain insights into the reaction mechanism.